Difference between revisions of "Part:BBa K3190109"

(Usage and Biology)
Line 4: Line 4:
  
 
Mammalian Luteinizing Hormones (LH) share structural similarity, functional equivalency, and bind the same receptor as hCG; this suggests that Xenopus LHCGR may serve as a good alternative to Homo sapiens LHCGR for the detection of the ligand i.e. luteinizing hormone as LH has been found to induce maturation of Xenopus oocytes in vitro (Wlizla et al., 2017).  
 
Mammalian Luteinizing Hormones (LH) share structural similarity, functional equivalency, and bind the same receptor as hCG; this suggests that Xenopus LHCGR may serve as a good alternative to Homo sapiens LHCGR for the detection of the ligand i.e. luteinizing hormone as LH has been found to induce maturation of Xenopus oocytes in vitro (Wlizla et al., 2017).  
For this biobrick, the C-terminal end of XLHCGR was fused with  superfolder GFP (<partinfo>BBa_K3190205</partinfo>) using a linker (<partinfo>BBa_K3190206</partinfo>.
+
For this biobrick, the C-terminal end of XLHCGR was fused with  superfolder GFP (<partinfo>BBa_K3190205</partinfo>) using a linker (<partinfo>BBa_K3190206</partinfo>).
  
 
===Usage and Biology===
 
===Usage and Biology===

Revision as of 14:26, 20 October 2019


Xenopus laevis lutropin-choriogonadotropic hormone receptor LHCGR CDS with Linker-superfolder GF

Mammalian Luteinizing Hormones (LH) share structural similarity, functional equivalency, and bind the same receptor as hCG; this suggests that Xenopus LHCGR may serve as a good alternative to Homo sapiens LHCGR for the detection of the ligand i.e. luteinizing hormone as LH has been found to induce maturation of Xenopus oocytes in vitro (Wlizla et al., 2017). For this biobrick, the C-terminal end of XLHCGR was fused with superfolder GFP (BBa_K3190205) using a linker (BBa_K3190206).

Usage and Biology

In our studies, XLHCGR-Li-sfGFP was used to examine expression and localization of XLHCGR (BBa_K3190107) in S. cerevisiae.


Chromosomal integration

For our studies, XLHCGR-Li-sfGFP was integrated into the yeast chromosome, and correct insertion was verified using colony PCR.


Ovulaid27.png

Figure 1: Colony PCR of yeast transformed with XLHCGR-Li-sfGFP | Specific yeast genotyping primers were used for the PCR reaction. PCR products were separated by electropheresis on 1% agarose gel. The sizes of the molecular weight standards are shown on the left. Lanes 1-8 correspond to individual colonies. Expected band sizes are of 1000 bp, indicating successful chromosomal integration. Band sizes of 1500 bp indicate unsuccesful chromosomal integration.


Expression of XLHCGR

Expression of the XLHCGR-Li-sfGFP was confirmed by performing western blot, using anti GFP antibody. The results are depicted below:


[INSERT WB IMAGE HERE]


Figure 2: Western blot of insoluble vs soluble cellular protein | Western blot was carried out using anti-GFP antibodies. Yeast expressing empty vectors and GFP was used as negative and positive control respectively. Two replicate yeast cultures were used for the western blot.

As expected, XLHCGR-sfGFP was predominantly found in the insoluble fraction, suggesting possible membrane localization. The existence of a small band in the soluble fraction indicates that the protein was very abundant in the respective cells. Similarly, the presence of GFP in the insoluble fraction can be attributed to very high expression levels.


Microscopy

To further verify expression of XLHCGR-Li-sfGFP, and examine intracellular localization of the receptor, confocal microscopy was performed.

Ovulaid22.png

Figure 3: Confocal microscopy of transformed yeast cells | A) Bright field empty vector. B) Fluorescence filter empty vector. C) Bright field XLHCGR-sfGFP. D) Fluorescence filter XLHCGR-sfGFP.

As expected, a clear fluorescent signal was seen in yeast expressing XLHCGR-Li-sfGFP (Fig. 3C and D) confirming expression of XLHCGR-Li-sfGFP. However, localization of the fluorescent signal (Fig. 3D) was not sufficient to conclude on the specific location of XLHCGR within the cell.



Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 428
    Illegal BglII site found at 1682
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 2179