Difference between revisions of "Part:BBa K3075000"

Line 1: Line 1:
== PAM-SnoopT ==
+
__NOTOC__
 +
<partinfo>BBa_K3075001 short</partinfo>
  
==== Introduction ====  
+
=== Introduction ===
  
PAM-Snooptag-His consists of the enzyme Phenylalanine aminomutase (PAM) fused at the C-terminus to a short polypeptide tag (Snooptag) and a Hexahistidine Tag (6xHis-tag), separated by interconnecting GSG linkage sequences. The sequence of PAM originating from ''Taxus wallichiana var. chinensis'' was utilised. (1) The SnoopTag is a small polypeptide tag that spontaneously forms an isopeptide bond between reactive amino acid side chains to its corresponding SnoopCatcher (Brune, 2017). This system opens up a variety of applications, utilising the catcher-tag conjugation system for bioconjugation and synthetic assembly of the DBAT enzyme to SnoopCatcher containing proteins.  
+
DBAT-Snooptag-His consists of the enzyme 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT) fused to a short C-terminal polypeptide tag (Snooptag) and a Hexahistidine Tag (6xHis-tag), separated by interconnecting GSG linkage sequences. The sequence of DBAT which was used, originated from ''Taxus cuspidata'' (Japanese yew), with a double mutation of G38R/F301V (2). The SnoopTag is a small polypeptide tag that spontaneously forms an isopeptide bond between reactive amino acid side chains to its corresponding SnoopCatcher (Brune, 2017). This system opens up a variety of applications, utilising the catcher-tag conjugation system for bioconjugation and synthetic assembly of the DBAT enzyme to SnoopCatcher containing proteins.  
  
Image
+
[[File:Part-BBa_K3075001-Introduction.png]]
  
The Hexahistidine tag is a common additive due to its high affinity for metal ions used in the purification technique of immobilized metal affinity chromatography (IMAC). Ni2+ ions were used for his-tag purification due to its high yield.  
+
The Hexahistidine tag is a common additive due to its high affinity for metal ions used in the purification technique of immobilized metal affinity chromatography (IMAC). Ni2+ ions were used for his-tag purification due to its high yield.
  
==== Usage and Biology ====
+
=== Usage and Biology ===
  
Phenylalanine aminomutase catalyses the conversion of 2S-α-phenylalanine to 3R-β-phenylalanine. (2) Naturally, this enzyme is involved in the synthesis of trans-cinnamate from L-phenylalanine, an important part of Phenylpropanoid metabolism. It is also known to catalyse the initial step of N-benzoyl phenylisoserinoyl biosynthesis, which functions as the side chain of the anticancer drug Paclitaxel. (1) Recombinant phenylalanine aminomutase has a sequence of 698 amino acid residues with a molecular mass of 76,530 Daltons and maintains stability at a pH of 9-11 and temperature of 60-70C.  
+
This protein naturally participates in the synthesis of baccatin III, where it catalyses the final acetylation of 10-deacetylbaccatin III. Baccatin III synthesis is a subpathway of paclitaxel biosynthesis, which is itself part of Alkaloid biosynthesis. The mutant however, has been designed to catalyse the acetylation of 10-deacetyltaxol (DT) with a catalytic efficiency approximately six times higher than that of the wild-type. (2) The recombinant mutant enzyme has a length of 440 amino acid residues, a molecular weight of 49,052 Da and an optimum pH of 7.5. (3)
 +
 
 +
=== Characterisation ===
 +
 
 +
The gBlock was assembled into the pET19b expression vector at the multiple cloning site via gibson assembly with a 3-fold excess of insert to vector <link to protocols>. Gibson products were transformed into high efficiency T7 Express E. coli (NEB) by heat shocking at 42°C and cells were plated on ampicillin supplemented agar plates for selection. Transformants were screened for recombinant plasmids by colony PCR (figure ??). Colonies resulting in amplicons with an observed molecular weight of approximately 1.5 kb were grown overnight in a 5 mL culture and plasmid DNA was extracted by miniprep and submitted for sequence confirmation via Sanger sequencing (Figure ??).  
  
 
Image
 
Image
  
==== Characterisation ====
+
Figure 2. Recombinant DBAT-SnoopT-His gene amplified by colony PCR at annealing temperature 67.6°C and extension time 43 seconds, else as per protocol. 10 uL of PCR product was run on a 1% agarose gel at 100 V for 1 hour using 5 uL of 2-log DNA ladder (NEB) as a standard (Lane 1). Single band at ~1.5kb.
 +
 
 +
Figure 3. DBAT-SnoopT-His sequence chromatogram.
  
 
'''Protein expression assay'''
 
'''Protein expression assay'''
  
Cells containing a plasmid with the PAM insert (as confirmed by colony PCR and sequencing) were grown up and a sample of this was used to perform a protein expression assay. Bug buster was used to separate soluble and insoluble proteins.
+
Cells containing a plasmid with the DBAT insert were grown up and a sample of this was used to perform a protein expression assay. Bug buster was used to separate soluble and insoluble proteins. LXYL was not successfully cloned thus could not be expressed.
 +
 
 +
Image
 +
 
 +
Figure ?. Protein expression assay using bug buster to determine expression of 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT) as soluble and insoluble form.
 +
 
 +
'''Purification'''
 +
 
 +
Following the confirmation of protein expression indicated by bug buster gels, attempts were made to purify DBAT.
 +
 
 +
Image
 +
 
 +
Figure ?. SDS-PAGE of AKTA purification fractions of DBAT His-tagged protein
 +
 
 +
'''Liquid Chromatography with tandem mass spectrometry'''
 +
 
 +
Soluble protein bands (fractions 4-7) as well as a total protein lysate band at the same predicted molecular weight as DBAR were excised from the gel of purified fractions in Figure? And sent for analysis by Liquid Chromatography with tandem mass spectrometry (LCMSMS). This was performed to determine the identity of the protein bands by mapping peptides detected by LCMSMS onto the sequence of DBAT obtained from sequencing data of the cloned insert.
 +
 
 +
Image
 +
 
 +
Figure ?.  Liquid Chromatography with tandem mass spectrometry analysis of suspected DBAT protein bands excises form Figure ? protein gel. A: Total protein lysate sample. B: soluble protein sample taken from fractions 4-7.
 +
 
 +
<!-- -->
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K3075001 SequenceAndFeatures</partinfo>
 +
 
  
Figure ?. Protein expression assay using bug buster to determine expression of Phenylalanine aminomutase (PAM) as soluble and insoluble form.
+
<!-- Uncomment this to enable Functional Parameter display
 +
===Functional Parameters===
 +
<partinfo>BBa_K3075001 parameters</partinfo>
 +
<!-- -->

Revision as of 04:29, 21 October 2019

DBATG38R/F301V-SnoopT-His

Introduction

DBAT-Snooptag-His consists of the enzyme 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT) fused to a short C-terminal polypeptide tag (Snooptag) and a Hexahistidine Tag (6xHis-tag), separated by interconnecting GSG linkage sequences. The sequence of DBAT which was used, originated from Taxus cuspidata (Japanese yew), with a double mutation of G38R/F301V (2). The SnoopTag is a small polypeptide tag that spontaneously forms an isopeptide bond between reactive amino acid side chains to its corresponding SnoopCatcher (Brune, 2017). This system opens up a variety of applications, utilising the catcher-tag conjugation system for bioconjugation and synthetic assembly of the DBAT enzyme to SnoopCatcher containing proteins.

Part-BBa K3075001-Introduction.png

The Hexahistidine tag is a common additive due to its high affinity for metal ions used in the purification technique of immobilized metal affinity chromatography (IMAC). Ni2+ ions were used for his-tag purification due to its high yield.

Usage and Biology

This protein naturally participates in the synthesis of baccatin III, where it catalyses the final acetylation of 10-deacetylbaccatin III. Baccatin III synthesis is a subpathway of paclitaxel biosynthesis, which is itself part of Alkaloid biosynthesis. The mutant however, has been designed to catalyse the acetylation of 10-deacetyltaxol (DT) with a catalytic efficiency approximately six times higher than that of the wild-type. (2) The recombinant mutant enzyme has a length of 440 amino acid residues, a molecular weight of 49,052 Da and an optimum pH of 7.5. (3)

Characterisation

The gBlock was assembled into the pET19b expression vector at the multiple cloning site via gibson assembly with a 3-fold excess of insert to vector <link to protocols>. Gibson products were transformed into high efficiency T7 Express E. coli (NEB) by heat shocking at 42°C and cells were plated on ampicillin supplemented agar plates for selection. Transformants were screened for recombinant plasmids by colony PCR (figure ??). Colonies resulting in amplicons with an observed molecular weight of approximately 1.5 kb were grown overnight in a 5 mL culture and plasmid DNA was extracted by miniprep and submitted for sequence confirmation via Sanger sequencing (Figure ??).

Image

Figure 2. Recombinant DBAT-SnoopT-His gene amplified by colony PCR at annealing temperature 67.6°C and extension time 43 seconds, else as per protocol. 10 uL of PCR product was run on a 1% agarose gel at 100 V for 1 hour using 5 uL of 2-log DNA ladder (NEB) as a standard (Lane 1). Single band at ~1.5kb.

Figure 3. DBAT-SnoopT-His sequence chromatogram.

Protein expression assay

Cells containing a plasmid with the DBAT insert were grown up and a sample of this was used to perform a protein expression assay. Bug buster was used to separate soluble and insoluble proteins. LXYL was not successfully cloned thus could not be expressed.

Image

Figure ?. Protein expression assay using bug buster to determine expression of 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT) as soluble and insoluble form.

Purification

Following the confirmation of protein expression indicated by bug buster gels, attempts were made to purify DBAT.

Image

Figure ?. SDS-PAGE of AKTA purification fractions of DBAT His-tagged protein

Liquid Chromatography with tandem mass spectrometry

Soluble protein bands (fractions 4-7) as well as a total protein lysate band at the same predicted molecular weight as DBAR were excised from the gel of purified fractions in Figure? And sent for analysis by Liquid Chromatography with tandem mass spectrometry (LCMSMS). This was performed to determine the identity of the protein bands by mapping peptides detected by LCMSMS onto the sequence of DBAT obtained from sequencing data of the cloned insert.

Image

Figure ?. Liquid Chromatography with tandem mass spectrometry analysis of suspected DBAT protein bands excises form Figure ? protein gel. A: Total protein lysate sample. B: soluble protein sample taken from fractions 4-7.

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 771
    Illegal PstI site found at 826
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 771
    Illegal PstI site found at 826
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 28
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 771
    Illegal PstI site found at 826
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 771
    Illegal PstI site found at 826
  • 1000
    COMPATIBLE WITH RFC[1000]