Difference between revisions of "Part:BBa K3037002"
Line 38: | Line 38: | ||
Has mutation in the Ruv site and therefore it has no endonuclease function, only binding to the DNA. | Has mutation in the Ruv site and therefore it has no endonuclease function, only binding to the DNA. | ||
+ | |||
+ | == Characterization == | ||
+ | |||
+ | === Outline === | ||
+ | We performed the following characterization experiments: | ||
+ | |||
+ | 1) Prove of DNA-binding ability of dCas9 via an EMSA shift assay (Performed in [https://parts.igem.org/Part:BBa_K3037005 (BBa K3037005)] | ||
+ | |||
+ | === Experiments in Detail === | ||
+ | |||
+ | ==== 1) prove of DNA-binding ability of dCas9 via an EMSA shift assay ==== | ||
+ | |||
+ | |||
+ | <b>1. Materials:</b> | ||
+ | |||
+ | A. 100 ng of PCR amplified <span style="font-style: italic;">Sry</span> gene | ||
+ | |||
+ | B. 200 ng of dCas9-GFP | ||
+ | |||
+ | C. 200 ng of guide RNA specifically targeting the amplified <span style="font-style: italic;">Sry</span> gene | ||
+ | |||
+ | D. 1 x Reaction buffer - 20 mM Hepes buffer (pH 7.2) | ||
+ | |||
+ | 100 mM Nacl | ||
+ | |||
+ | 5 mM Mgcl2 | ||
+ | |||
+ | 0.1 mM EDTA | ||
+ | |||
+ | |||
+ | Six different guide RNAs were designed for targeting different regions of <span style="font-style: italic;">Sry</span> gene. Using the online tool benchling and fasta sequence of <span style="font-style: italic;">Sry</span> gene | ||
+ | |||
+ | https://2019.igem.org/File:T--TU_Dresden--EMSA_Primers_MBP%2BeGFP%2BdCas9.png | ||
+ | |||
+ | |||
+ | <b>2. Methods:</b> | ||
+ | |||
+ | 1. We wanted to check if the overall efficiency of mobility shift increases when combinations of guide RNAs are used, so individual reactions with combinations of guide RNA were used. | ||
+ | |||
+ | 2. Guide RNA, dCas9-GFP and <span style="font-style: italic;">Sry</span> gene were incubated in reaction buffer (respective amounts mentioned in the materials section) for 37 °C for 1 hour. | ||
+ | |||
+ | 3. Post incubation, they were mixed with loading dye without SDS, 20 % glycerol in Orange G dye and loaded onto 4-20 % gradient acrylamide- TBE precast gel. Gel was run for 3 hours at 75V in 1 x TBE buffer. | ||
+ | |||
+ | 4. Gel was then stained using ETBR with 1:20000 dilution in 1x TBE for 10 minutes. | ||
+ | |||
+ | |||
+ | <b>3.1 Results and Discussion of the 2 hours gel:</b> | ||
+ | |||
+ | https://2019.igem.org/File:T--TU_Dresden--EMSA1_MBP%2BeGFP%2BdCas9.png | ||
+ | |||
+ | Lane 1 - There is a clear <span style="font-style: italic;">Sry</span> gene at 800 base pairs and when <span style="font-style: italic;">Sry</span> gene is incubated with only dCas9 | ||
+ | |||
+ | Lane 2 - There is no shift seen in the position of the gene. | ||
+ | |||
+ | Lane 3 - When guide RNA 1 was incubated with the dCas9 DNA reaction mix, we see a shift in the mobility, this is because of the protein DNA interaction and this binding is hindering the gene mobility. | ||
+ | |||
+ | Lanes 5,6,7,8 and 9 – Different combinations of guide RNAs were used. From lane 7 and 8 we see the highest mobility shift. | ||
+ | |||
+ | From the electromobility shift assay performed above, we conclude that our expressed dCas9-GFP protein is functional and is able to successfully bind to gene with the help of appropriate guide RNAs. | ||
+ | |||
+ | |||
+ | <b>3.2 Results and Discussion of the 3 hours gel:</b> | ||
+ | |||
+ | https://2019.igem.org/File:T--TU_Dresden--EMSA2_MBP%2BeGFP%2BdCas9.png | ||
+ | |||
+ | This second gel was run more time in order to get rid of all the secondary structures of the RNA formed. | ||
+ | |||
+ | From lane 3 to 7, no difference in the mobility of Sry gene can be seen when only guide RNA is added to the reaction mix. | ||
+ | |||
+ | In Lane 8, 9 and 10 a mobility shift of the gene can be appreciated and in lane 11, when only guide RNA was loaded there is no bands. | ||
+ | |||
+ | In lane 12, dCas9 is in stacking part of gel, owing to higher molecular weight. | ||
+ | |||
+ | |||
+ | <b>4. Conclusions:</b> | ||
+ | |||
+ | - We have a functional dCas9 expressed, which is able bind successfully to <span style="font-style: italic;">Sry</span> gene with the help of guide RNA. | ||
+ | |||
+ | - dCas9 on its own is unable to bind to <span style="font-style: italic;">Sry</span> gene, suggesting that for binding guide RNA is required. | ||
+ | |||
+ | - Guide RNA on their own is unable to cause mobility shift of <span style="font-style: italic;">Sry</span> gene. | ||
Revision as of 19:11, 17 October 2019
dead CRISPR Associated Protein (dCas9)
dCas9 | |
---|---|
Function | Expression |
Use in | Escherichia coli |
RFC standard | RFC 25 compatible |
Backbone | pSB1C3 |
Submitted by | Team:TU_Dresden 2019[1] |
Contents
Overview
The TU Dresden 2019 team design this biobrick in order to make a fusion protein with dCas9 in accordance to the RFC 25 standard. (more information)
dCas9 was inserted into the pSB1C3 vector for transformation and expressed in Escherichia coli.
There are many dCas9 biobricks already available but all of them are optimized for expression in mammalian cells. This is the first one that is codon optimized to be expressed in E. coli.
New scope of in vitro applications of Cas9, which is normally used in vivo mainly.
Biology
Part of the CRISPR System. Immune system of bacteria, which store sequences of viral infections, recognize them and cut them apart.
We can use the system by providing guideRNAs to locate to any target DNA sequence with a high specificity.
Has mutation in the Ruv site and therefore it has no endonuclease function, only binding to the DNA.
Characterization
Outline
We performed the following characterization experiments:
1) Prove of DNA-binding ability of dCas9 via an EMSA shift assay (Performed in (BBa K3037005)
Experiments in Detail
1) prove of DNA-binding ability of dCas9 via an EMSA shift assay
1. Materials:
A. 100 ng of PCR amplified Sry gene
B. 200 ng of dCas9-GFP
C. 200 ng of guide RNA specifically targeting the amplified Sry gene
D. 1 x Reaction buffer - 20 mM Hepes buffer (pH 7.2)
100 mM Nacl
5 mM Mgcl2
0.1 mM EDTA
Six different guide RNAs were designed for targeting different regions of Sry gene. Using the online tool benchling and fasta sequence of Sry gene
https://2019.igem.org/File:T--TU_Dresden--EMSA_Primers_MBP%2BeGFP%2BdCas9.png
2. Methods:
1. We wanted to check if the overall efficiency of mobility shift increases when combinations of guide RNAs are used, so individual reactions with combinations of guide RNA were used.
2. Guide RNA, dCas9-GFP and Sry gene were incubated in reaction buffer (respective amounts mentioned in the materials section) for 37 °C for 1 hour.
3. Post incubation, they were mixed with loading dye without SDS, 20 % glycerol in Orange G dye and loaded onto 4-20 % gradient acrylamide- TBE precast gel. Gel was run for 3 hours at 75V in 1 x TBE buffer.
4. Gel was then stained using ETBR with 1:20000 dilution in 1x TBE for 10 minutes.
3.1 Results and Discussion of the 2 hours gel:
https://2019.igem.org/File:T--TU_Dresden--EMSA1_MBP%2BeGFP%2BdCas9.png
Lane 1 - There is a clear Sry gene at 800 base pairs and when Sry gene is incubated with only dCas9
Lane 2 - There is no shift seen in the position of the gene.
Lane 3 - When guide RNA 1 was incubated with the dCas9 DNA reaction mix, we see a shift in the mobility, this is because of the protein DNA interaction and this binding is hindering the gene mobility.
Lanes 5,6,7,8 and 9 – Different combinations of guide RNAs were used. From lane 7 and 8 we see the highest mobility shift.
From the electromobility shift assay performed above, we conclude that our expressed dCas9-GFP protein is functional and is able to successfully bind to gene with the help of appropriate guide RNAs.
3.2 Results and Discussion of the 3 hours gel:
https://2019.igem.org/File:T--TU_Dresden--EMSA2_MBP%2BeGFP%2BdCas9.png
This second gel was run more time in order to get rid of all the secondary structures of the RNA formed.
From lane 3 to 7, no difference in the mobility of Sry gene can be seen when only guide RNA is added to the reaction mix.
In Lane 8, 9 and 10 a mobility shift of the gene can be appreciated and in lane 11, when only guide RNA was loaded there is no bands.
In lane 12, dCas9 is in stacking part of gel, owing to higher molecular weight.
4. Conclusions:
- We have a functional dCas9 expressed, which is able bind successfully to Sry gene with the help of guide RNA.
- dCas9 on its own is unable to bind to Sry gene, suggesting that for binding guide RNA is required.
- Guide RNA on their own is unable to cause mobility shift of Sry gene.
Sequence
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 1096
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 3375
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
- Mutated EcoRI site in the midde of the coding region by site directed mutagenesis PCR
For mutate it the primers used were: Forward: CTTTTCGtATTCCTTATTATGTTGGTC Reverse: CATAATAAGGAATaCGAAAAGTCAAG