Difference between revisions of "Part:BBa K3038004"

Line 1: Line 1:
  
__NOTOC__
+
===Mlut11700 Nter Cmyc===
<partinfo>BBa_K3038004 short</partinfo>
+
===Acyl CoA oxydase===
 +
 
 +
Methyl ketones are formed by the hydrolysis of an acyl-ACP intermediate and the subsequent decarboxylation of the 3-keto acid. These volatile substances were first found in rue (Ruta graveolens) [250] but are widespread among plant, animal and microbial species [251]. Wild-type E. coli cells do not produce significant amounts of methyl ketones, but the ability can be established by metabolic engineering. In the first study small amounts of methyl ketones were obtained by overexpression of the genes shmks1 and shmks2 (methylketone synthases 1 and 2) from wild tomato (Solanum habrochaites) [252]. Park et al. [253] applied overexpression of these genes in an E. coli strain that was blocked in four pathways of the fermentation metabolism by deletion of the genes adhE, ldhA, poxB and pta. This strain procuced 450 mg l-1 methyl ketones. Shortly before, a methyl ketone titer of 380 mg l-1 was published upon overexpression of the genes fadB, fadM and Mlut11700 (an acyl-CoA oxidase of Micrococcus luteus) in an E. coli strain with deleted fadE and fadA genes [254]. The combination of the genes fadB, fadM and Mlut11700 was also sufficient for chemolithoautotrophic production of up to 180 mg l-1 methyl ketones in a strain of Ralstonia eutropha with both β-oxidation operons deleted [255].
  
Acyl CoA oxydase
 
  
 
===References===
 
===References===
 +
 +
Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels
 +
Helge Jans Janßen1 and Alexander Steinbüchelcorresponding author1,2. Biotechnol Biofuels. 2014; 7: 7.  doi: 10.1186/1754-6834-7-7. PMCID: PMC3896788. PMID: 24405789
 +
  
 
Engineering of Bacterial Methyl Ketone Synthesis for Biofuels. Ee-Been Goh,a,c Edward E. K. Baidoo,a,c Jay D. Keasling,a,c,d and Harry R. Beller. Appl Environ Microbiol. 2012 Jan; 78(1): 70–80.doi: 10.1128/AEM.06785-11. PMCID: PMC3255637. PMID: 22038610
 
Engineering of Bacterial Methyl Ketone Synthesis for Biofuels. Ee-Been Goh,a,c Edward E. K. Baidoo,a,c Jay D. Keasling,a,c,d and Harry R. Beller. Appl Environ Microbiol. 2012 Jan; 78(1): 70–80.doi: 10.1128/AEM.06785-11. PMCID: PMC3255637. PMID: 22038610

Revision as of 12:46, 16 October 2019

Mlut11700 Nter Cmyc

Acyl CoA oxydase

Methyl ketones are formed by the hydrolysis of an acyl-ACP intermediate and the subsequent decarboxylation of the 3-keto acid. These volatile substances were first found in rue (Ruta graveolens) [250] but are widespread among plant, animal and microbial species [251]. Wild-type E. coli cells do not produce significant amounts of methyl ketones, but the ability can be established by metabolic engineering. In the first study small amounts of methyl ketones were obtained by overexpression of the genes shmks1 and shmks2 (methylketone synthases 1 and 2) from wild tomato (Solanum habrochaites) [252]. Park et al. [253] applied overexpression of these genes in an E. coli strain that was blocked in four pathways of the fermentation metabolism by deletion of the genes adhE, ldhA, poxB and pta. This strain procuced 450 mg l-1 methyl ketones. Shortly before, a methyl ketone titer of 380 mg l-1 was published upon overexpression of the genes fadB, fadM and Mlut11700 (an acyl-CoA oxidase of Micrococcus luteus) in an E. coli strain with deleted fadE and fadA genes [254]. The combination of the genes fadB, fadM and Mlut11700 was also sufficient for chemolithoautotrophic production of up to 180 mg l-1 methyl ketones in a strain of Ralstonia eutropha with both β-oxidation operons deleted [255].


References

Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels Helge Jans Janßen1 and Alexander Steinbüchelcorresponding author1,2. Biotechnol Biofuels. 2014; 7: 7. doi: 10.1186/1754-6834-7-7. PMCID: PMC3896788. PMID: 24405789


Engineering of Bacterial Methyl Ketone Synthesis for Biofuels. Ee-Been Goh,a,c Edward E. K. Baidoo,a,c Jay D. Keasling,a,c,d and Harry R. Beller. Appl Environ Microbiol. 2012 Jan; 78(1): 70–80.doi: 10.1128/AEM.06785-11. PMCID: PMC3255637. PMID: 22038610


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 1682
    Illegal XhoI site found at 1925
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 1816
    Illegal BsaI.rc site found at 2047
    Illegal SapI site found at 172