Difference between revisions of "Part:BBa K3219000"

Line 3: Line 3:
 
<partinfo>BBa_K3219000 short</partinfo>
 
<partinfo>BBa_K3219000 short</partinfo>
  
dCas9 enzyme is also known as a catalytically dead Cas9 enzyme<ref Larson, M. H. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2180–2196.</ref>. Different from traditional CRISPR Cas9 enzymes, dCas9 lacks endonuclease activity. It does not cleave DNA. Instead, with the help of a guide RNA, it specifically binds to the target, usually 20 -30 bp, and blocks transcript elongation by RNA polymerase.
+
dCas9 enzyme is also known as a catalytically dead Cas9 enzyme<ref> Larson, M. H. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2180–2196.</ref>. Different from traditional CRISPR Cas9 enzymes, dCas9 lacks endonuclease activity. It does not cleave DNA. Instead, with the help of a guide RNA, it specifically binds to the target, usually 20 -30 bp, and blocks transcript elongation by RNA polymerase.
  
 
In this part, a GFP is added to the C-terminus of the dCas9, connected using an SGAAAAGGS linker. The GFP is added so that the expression of both proteins could be checked easier.  
 
In this part, a GFP is added to the C-terminus of the dCas9, connected using an SGAAAAGGS linker. The GFP is added so that the expression of both proteins could be checked easier.  

Revision as of 10:12, 6 October 2019


dCas9-GFP

dCas9 enzyme is also known as a catalytically dead Cas9 enzyme[1]. Different from traditional CRISPR Cas9 enzymes, dCas9 lacks endonuclease activity. It does not cleave DNA. Instead, with the help of a guide RNA, it specifically binds to the target, usually 20 -30 bp, and blocks transcript elongation by RNA polymerase.

In this part, a GFP is added to the C-terminus of the dCas9, connected using an SGAAAAGGS linker. The GFP is added so that the expression of both proteins could be checked easier.

This sequence can be used by cloning it into a desired vector with a promoter and ribosome binding site.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 1837
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 4116
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 644


  1. Larson, M. H. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2180–2196.