Difference between revisions of "Part:BBa K3168004"

Line 2: Line 2:
 
===dCas9-LargeBitNanoLuc===
 
===dCas9-LargeBitNanoLuc===
  
This composite part is made up of two basic parts (figure 1). The first basic part [https://parts.igem.org/wiki/index.php?title=Part:BBa_K3168000 (BBa_K3168000)] codes for a catalytically dead CRISPR associated protein 9 (dCas9). This protein binds to a specific target on double stranded DNA. This specific target is determined by the guide RNA, which makes the target sequence of this protein very modular. The second basic part [https://parts.igem.org/wiki/index.php?title=Part:BBa_K3168002 (BBa_K3168002)], which is fused to dCas9, consist of a (GGS)<sub>5</sub> linker and the large bit of NanoLuc. When the large bit of Split-NanoLuc forms a complex with the small bit in the presence of the substrate (Furimazine), blue light is emitted. dCas9-LargeBit itself is slightly bioluminescent when the substrate is added. However, the intensity is more bright when a complex is formed with the small bit. Thus this composite part is part of a Split-NanoLuc detection system, which targets a specific sequence on dsDNA and sends out a bioluminescent signal (figure 2).  
+
This composite part is made up of two basic parts (figure 1). The first basic part [https://parts.igem.org/wiki/index.php?title=Part:BBa_K3168000 (BBa_K3168000)] codes for a catalytically dead CRISPR associated protein 9 (dCas9). dCas9 binds to a specific double-stranded DNA sequence which is determined by the guide RNA. The second basic part [https://parts.igem.org/wiki/index.php?title=Part:BBa_K3168002 (BBa_K3168002)], which is fused to dCas9, consists of a (GGS)<sub>5</sub> linker and the large bit of NanoLuc. When the large bit of Split-NanoLuc forms a complex with the small bit and the substrate Furimazine is present, blue light is emitted. dCas9-LargeBit itself is slightly bioluminescent when the substrate is added. However, the intensity is more bright when a complex is formed with the small bit. Thus this composite part is part of a Split-NanoLuc detection system, which targets a specific sequence on dsDNA and sends out a bioluminescent signal upon binding of this specific sequence (figure 2).
  
 
[[File:T--TU_Eindhoven--dCas9-LargeBit.png|300px|]]
 
[[File:T--TU_Eindhoven--dCas9-LargeBit.png|300px|]]
Line 9: Line 9:
  
 
===Usage and Biology===
 
===Usage and Biology===
dCas9 in combination with guide RNA forms a dsDNA recognition complex. A stronger bioluminescent signal is created when dCas9-LargBitNanoLuc and dCas9-SmallBitNanoLuc bind in close proximity.
+
dCas9 in combination with guide RNA forms a dsDNA recognition complex. A stronger bioluminescent signal is created when dCas9-LargBitNanoLuc and dCas9-SmallBitNanoLuc bind in close proximity.  
  
 
[[File:T--TU_Eindhoven--dCas9-SplitNL.png|900px|]]
 
[[File:T--TU_Eindhoven--dCas9-SplitNL.png|900px|]]

Revision as of 12:06, 23 September 2019

dCas9-LargeBitNanoLuc

This composite part is made up of two basic parts (figure 1). The first basic part (BBa_K3168000) codes for a catalytically dead CRISPR associated protein 9 (dCas9). dCas9 binds to a specific double-stranded DNA sequence which is determined by the guide RNA. The second basic part (BBa_K3168002), which is fused to dCas9, consists of a (GGS)5 linker and the large bit of NanoLuc. When the large bit of Split-NanoLuc forms a complex with the small bit and the substrate Furimazine is present, blue light is emitted. dCas9-LargeBit itself is slightly bioluminescent when the substrate is added. However, the intensity is more bright when a complex is formed with the small bit. Thus this composite part is part of a Split-NanoLuc detection system, which targets a specific sequence on dsDNA and sends out a bioluminescent signal upon binding of this specific sequence (figure 2).

T--TU Eindhoven--dCas9-LargeBit.png

Figure 1. Schematic representation of dCas9-LargeBitNanoLuc.

Usage and Biology

dCas9 in combination with guide RNA forms a dsDNA recognition complex. A stronger bioluminescent signal is created when dCas9-LargBitNanoLuc and dCas9-SmallBitNanoLuc bind in close proximity.

T--TU Eindhoven--dCas9-SplitNL.png

Figure 2. Schematic representation of dCas9-Split-NanoLuc system.

References

Dixon, A. S., Schwinn, M. K., Hall, M. P., Zimmerman, K., Otto, P., Lubben, T. H., ... & Wood, M. G. (2015). NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS chemical biology, 11(2), 400-408.

Zhang, Y., Qian, L., Wei, W., Wang, Y., Wang, B., Lin, P., ... & Cheng, S. (2016). Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains. ACS synthetic biology, 6(2), 211-216.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 1099
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 3378
    Illegal BamHI site found at 4630
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]