Difference between revisions of "Part:BBa K3039005"
CeilidhWelsh (Talk | contribs) |
|||
Line 2: | Line 2: | ||
<partinfo>BBa_K3039005 short</partinfo> | <partinfo>BBa_K3039005 short</partinfo> | ||
− | The enzymes PETase and MHETase were first discovered in Ideonella sakaiensis in 2016 by a group of researchers in Japan. These enzymes were found to degrade polyethylene terephthalate (PET) into its monomers, terephthalic acid (TPA) and ethylene glycol (EG). PETase degrades PET into Mono-(2-hydroxyethyl)terephthalic acid (MHET), Bis(2-Hydroxyethyl) terephthalate (BHET) and TPA, the main product being MHET. MHET is further degraded by MHETase into TPA and EG. We are aiming to use mutants of these enzymes to degrade the microfibres that are coming off clothing during washing cycles. The enzymes would be secreted into a filter that captures the microfibres. This sequence is the Escherichia coli K12 (E. coli K12) codon optimized DNA of the S416A_F424N mutant MHETase, with an attached His tag. The His tag was attached in order to more easily identify the enzymes. These mutations have been reported in past papers to increase the activity of MHETase. | + | The enzymes PETase and MHETase were first discovered in <i>Ideonella sakaiensis</i> in 2016 by a group of researchers in Japan. These enzymes were found to degrade polyethylene terephthalate (PET) into its monomers, terephthalic acid (TPA) and ethylene glycol (EG). PETase degrades PET into Mono-(2-hydroxyethyl)terephthalic acid (MHET), Bis(2-Hydroxyethyl) terephthalate (BHET) and TPA, the main product being MHET. MHET is further degraded by MHETase into TPA and EG. We are aiming to use mutants of these enzymes to degrade the microfibres that are coming off clothing during washing cycles. The enzymes would be secreted into a filter that captures the microfibres. This sequence is the <i>Escherichia coli</i> K12 (<i>E. coli</i> K12) codon optimized DNA of the S416A_F424N mutant MHETase, with an attached His tag. The His tag was attached in order to more easily identify the enzymes. These mutations have been reported in past papers to increase the activity of MHETase. |
Revision as of 11:28, 2 September 2019
BHETase 1
The enzymes PETase and MHETase were first discovered in Ideonella sakaiensis in 2016 by a group of researchers in Japan. These enzymes were found to degrade polyethylene terephthalate (PET) into its monomers, terephthalic acid (TPA) and ethylene glycol (EG). PETase degrades PET into Mono-(2-hydroxyethyl)terephthalic acid (MHET), Bis(2-Hydroxyethyl) terephthalate (BHET) and TPA, the main product being MHET. MHET is further degraded by MHETase into TPA and EG. We are aiming to use mutants of these enzymes to degrade the microfibres that are coming off clothing during washing cycles. The enzymes would be secreted into a filter that captures the microfibres. This sequence is the Escherichia coli K12 (E. coli K12) codon optimized DNA of the S416A_F424N mutant MHETase, with an attached His tag. The His tag was attached in order to more easily identify the enzymes. These mutations have been reported in past papers to increase the activity of MHETase.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal PstI site found at 958
- 12INCOMPATIBLE WITH RFC[12]Illegal PstI site found at 958
- 21COMPATIBLE WITH RFC[21]
- 23INCOMPATIBLE WITH RFC[23]Illegal PstI site found at 958
- 25INCOMPATIBLE WITH RFC[25]Illegal PstI site found at 958
Illegal NgoMIV site found at 297 - 1000COMPATIBLE WITH RFC[1000]