Difference between revisions of "Part:BBa K2818002"
DouglasNTU (Talk | contribs) |
|||
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K2818002 short</partinfo> | <partinfo>BBa_K2818002 short</partinfo> | ||
− | + | asd | |
dPspCas13b-ADAR2DD(E488Q) is a fusion protein that catalyzes the hydrolytic deamination of adenosine to form inosine in RNA molecules when used in conjunction with a guide RNA. Although there are preferred motifs, no Protospacer Adjacent Motif (PAM) is required. It is an optimized construct developed by Zhang Feng's lab (Cox et. al., 2017) to mediate efficient adenosine to inosine base change on specific positions of the mRNA target, which can be programmed by a specific guide RNA. This construct is termed as the REPAIR System (RNA Editing for Programmable A to I Replacement System) and it is currently not in the iGEM registry. Since it acts as an important basis for comparison when we characterize our new part this year (<html><a href="https://parts.igem.org/Part:BBa_K2818001">BBa_K2818001</a></html>), we have submitted it with our own data for its characterization. | dPspCas13b-ADAR2DD(E488Q) is a fusion protein that catalyzes the hydrolytic deamination of adenosine to form inosine in RNA molecules when used in conjunction with a guide RNA. Although there are preferred motifs, no Protospacer Adjacent Motif (PAM) is required. It is an optimized construct developed by Zhang Feng's lab (Cox et. al., 2017) to mediate efficient adenosine to inosine base change on specific positions of the mRNA target, which can be programmed by a specific guide RNA. This construct is termed as the REPAIR System (RNA Editing for Programmable A to I Replacement System) and it is currently not in the iGEM registry. Since it acts as an important basis for comparison when we characterize our new part this year (<html><a href="https://parts.igem.org/Part:BBa_K2818001">BBa_K2818001</a></html>), we have submitted it with our own data for its characterization. | ||
Revision as of 11:15, 15 October 2019
Cas13b-NES-ADAR
asd
dPspCas13b-ADAR2DD(E488Q) is a fusion protein that catalyzes the hydrolytic deamination of adenosine to form inosine in RNA molecules when used in conjunction with a guide RNA. Although there are preferred motifs, no Protospacer Adjacent Motif (PAM) is required. It is an optimized construct developed by Zhang Feng's lab (Cox et. al., 2017) to mediate efficient adenosine to inosine base change on specific positions of the mRNA target, which can be programmed by a specific guide RNA. This construct is termed as the REPAIR System (RNA Editing for Programmable A to I Replacement System) and it is currently not in the iGEM registry. Since it acts as an important basis for comparison when we characterize our new part this year (BBa_K2818001), we have submitted it with our own data for its characterization.
Usage and Biology
As mentioned above, the dPspCas13b is the catalytically inactive version of Type IV RNA-targeting CRISPR-associated protein 13b, an RNA-guided ribonuclease derived from Prevotella sep. P5-125 and it acts as the RNA-targeting scaffold to bind to specific RNA target sequence. Such a binding action is mediated by a single guide RNA, the sequence of which greatly affects the binding efficiency of dCas protein onto the target and ultimately the functionality of the fused protein.
The other domain fused to the dCas13b here is the Adenosine deaminase acting on RNA 2 (ADAR2), which is an enzyme that catalyzes the hydrolytic deamination of adenosine to inosine. As inosine is functionally equivalent to guanosine, such a construct can be optimized in genome engineering to induce desired base change at a specific nucleobase in the codon, useful for both research and clinical applications. It is worth noting that a hyperactive mutant of the wildtype ADAR2 (ADAR2DD), which has its glutamic acid at position 488 replaced by a glutamine (E488Q) is fused here, to allow looser stringency on the target sequence as well as to increase on-target efficiency.
Characterisation of Part
In our project, we aimed to characterize the adenosine-to-inosine editing activities of this construct when targeting both the mRNA transcript of exogenous and the endogenous genes. Since it serves as a basis of comparison for the other construct, please refer to this page (BBa_K2818001) to view the methodology and results for its characterization. Also, since it is a published construct that has been well-characterized, the articles we referred to below also contains the characterization of this construct.
Reference
- Kuttan, A., & Bass, B. L. (2012). Mechanistic insights into editing-site specificity of ADARs. Proceedings of the National Academy of Sciences, 109(48), E3295-E3304.
- Cox, D. B., Gootenberg, J. S., Abudayyeh, O. O., Franklin, B., Kellner, M. J., Joung, J., & Zhang, F. (2017). RNA editing with CRISPR-Cas13. Science, 358(6366), 1019-1027
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 2884
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1787
Illegal BamHI site found at 839
Illegal BamHI site found at 3310
Illegal XhoI site found at 4011 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 1520
Illegal AgeI site found at 2396 - 1000COMPATIBLE WITH RFC[1000]