Difference between revisions of "Part:BBa K1062004"
(→Csy4 (Csy6f), a member of CRISPR family.) |
(→In summary) |
||
Line 120: | Line 120: | ||
===In summary=== | ===In summary=== | ||
+ | <p> | ||
+ | ===In summary=== | ||
<p> | <p> | ||
This year, we used point mutations to redesign four mutants on the basis of [https://parts.igem.org/Part:BBa_K1062004 Csy4(BBa_K1062004)] which are [https://parts.igem.org/Part:BBa_K2615004 Csy4-Q104A(BBa_K2615004)], [https://parts.igem.org/Part:BBa_K2615005 Csy4-Y176F(BBa_K2615005)], [https://parts.igem.org/Part:BBa_K2615006 Csy4-F155A(BBa_K2615006)] and Csy4-H29A(BBa_K2615007). The capabilities of cleavage and recognition are different for each Csy4 mutants, and we name them the Csy4 family. The combination of the Csy4 family members and the miniToe family members constitute a post-transcriptional regulatory toolkit for achieving different expression levels of target genes. | This year, we used point mutations to redesign four mutants on the basis of [https://parts.igem.org/Part:BBa_K1062004 Csy4(BBa_K1062004)] which are [https://parts.igem.org/Part:BBa_K2615004 Csy4-Q104A(BBa_K2615004)], [https://parts.igem.org/Part:BBa_K2615005 Csy4-Y176F(BBa_K2615005)], [https://parts.igem.org/Part:BBa_K2615006 Csy4-F155A(BBa_K2615006)] and Csy4-H29A(BBa_K2615007). The capabilities of cleavage and recognition are different for each Csy4 mutants, and we name them the Csy4 family. The combination of the Csy4 family members and the miniToe family members constitute a post-transcriptional regulatory toolkit for achieving different expression levels of target genes. | ||
Line 136: | Line 138: | ||
<br> | <br> | ||
<br> | <br> | ||
− | Csy4-H29A, the most special one of our Csy4 family, whose 29th site is changed from CAC(encoding His ) to GCG(encoding Ara). Csy4-H29A has a high binding affinity but has the lowest capacity of cleavage, so we call it dead-Csy4. There is no doubt that its downstream gene expression is the lowest in the family. | + | [https://parts.igem.org/Part:BBa_K2615007 Csy4-H29A], the most special one of our Csy4 family, whose 29th site is changed from CAC(encoding His ) to GCG(encoding Ara). Csy4-H29A has a high binding affinity but has the lowest capacity of cleavage, so we call it dead-Csy4. There is no doubt that its downstream gene expression is the lowest in the family. |
<br> | <br> | ||
</p> | </p> |
Revision as of 02:02, 18 October 2018
Csy4
Csy4 is an enzyme that is essential to the creation of gRNAs. Csy4 is a member of CRISPR family.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 353
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 69
Usage and Biology
Conjugation Project
Synthetic Circuit
2018 OUC-China
Csy4 (Csy6f), a member of CRISPR family.
===Csy4 (Csy6f), a member of CRISPR family.===
<p>
The endoribonuclease Csy4 from CRISPR family is the main role of miniToe system. Csy4 (Cas6f) is a 21.4 kDa protein which recognizes and cleaves a specific 22nt RNA hairpin. In type I and type III CRISPR systems, the specific Cas6 endoribonuclease splits the pre-crRNAs in a sequence-specific way to generate 60-nucleotide (nt) crRNA products in which segments of the repeat sequence flank the spacer (to target "foreign" nucleic acid sequence) [1]. Inactivation of the Cas proteins leads to a total loss of the immune mechanism function.
Background of 2018 OUC-China' project
This year, we designed and achieved a gene regulatory toolbox based on CRISPR RNA endonucleases Csy4 for post-transcriptional regulation. A rational designed modular RNA fragment named miniToe was utilized for precise and efficient translational regulation. The miniToe module was constructed through inserting a 22 nt Csy4 recognition site between RBS and a cis-repressive RNA element, which is able to mask the RBS region and inhibit translation initiation. By up-regulating the level of Csy4 in cell as input, the miniToe module will be cleaved and releases an exposed RBS for output translation. As our innovation, we further designed four Csy4 mutants and five mutated miniToe module in a predictable way by modeling, which aims at enriching our toolkit
for diverse regulation ranges on target genes. The whole toolbox includes ten
combinations of different Csy4 mutants and miniToe modules, which is called
miniToe family.
Proof of functions about Csy4 family
We have done three kinds of experiments to help us confirm the function of the Csy4 family. Our aim is to get some new Csy4 mutants with different cleavage capacity, so we specifically tested this aspect of them. For testing our system, we use the superfold green fluorescent protein (sfGFP) as our target gene. Our expectation is that the fluorescence intensities of sfGFP can vary upon the rates of Csy4s’ cleavage. That means we have improved four new parts which present various expression of target genes.
Prediction
Before the experiments, we have proved our ideas by model. The predication below shows the possibilities of different expression levels by different Csy4 mutants. So the model help us to get more information for our improvement deeply this year!
The qualitative experiments by fluorescent microscope
First, we have tested five different Csy4s by Fluorescent Stereo Microscope Leica M165 FC. We have cultured them in the solid medium in plates until the bacterial colonies can be observed by naked eyes. At that time, the sfGFP have been accumulated so we can see the fluorescence by microscope. As we can see in Fig.5, we have cultured the five different strains for same time which both have the same miniToe circuit but have totally different Csy4 mutants. From top to bottom in Fig.5, there are fluorescence images by fluorescent microscope which indicate Csy4-WT, Csy4-Q104A, Csy4-Y176F, Csy4-F155A and Csy4-H29A in sequence. We can observe visible distinctions in these images. The fluorescence intensities decrease one by one from top to bottom which means the Csy4s’ capabilities of cleavage decrease one by one. So the images indicate the Csy4-WT has the strongest capability of cleavage, while the Csy4-H29A is a kind of dead-Csy4 (dCsy4) which is hardly to find the fluorescence by microscope. The qualitative experiment is a basis of further experiments.
The result by flow cytometer
The qualitative experiment is not enough to analyze Csy4s. So we test our system by flow cytometer after we cultured them for ten hours in M9 medium. The expression of sfGFP in five groups are showed in Fig.6, and they are Csy4-WT&miniToe-WT, Csy4-Q104A&miniToe-WT, Csy4-Y176F&miniToe-WT, Csy4-F155A&miniToe-WT and Csy4-H29A&miniToe-WT. We find that 5 groups’ fluorescence intensities have an obvious order from Csy4-WT to Csy4-H29A, which means the capabilities of cleavage decrease one by one. Their order goes from strong to weak is Csy4-WT, Csy4-Q104A, Csy4-Y176F, Csy4-F155A and Csy4-H29A. As the Fig.6 shown, the relative expression level can be measured by flow cytometer at the same time.
The result by microplate reader
Besides all the works we have done before, we also need to know more information about the Csy4s we design. Even though we have known that our Csy4 mutants have differentiated expression level after ten-hour-culture, the expression of whole cultivation period is also a reference for us to know if our system can work as expectation.
In summary
===In summary===
<p>
This year, we used point mutations to redesign four mutants on the basis of Csy4(BBa_K1062004) which are Csy4-Q104A(BBa_K2615004), Csy4-Y176F(BBa_K2615005), Csy4-F155A(BBa_K2615006) and Csy4-H29A(BBa_K2615007). The capabilities of cleavage and recognition are different for each Csy4 mutants, and we name them the Csy4 family. The combination of the Csy4 family members and the miniToe family members constitute a post-transcriptional regulatory toolkit for achieving different expression levels of target genes.
|