Difference between revisions of "Part:BBa K2888006"
Yinchizhou18 (Talk | contribs) |
Yinchizhou18 (Talk | contribs) |
||
Line 22: | Line 22: | ||
<img src="https://static.igem.org/mediawiki/parts/f/f1/T--SBS_SH_112144--plasmid.png" width=400 height=200/> | <img src="https://static.igem.org/mediawiki/parts/f/f1/T--SBS_SH_112144--plasmid.png" width=400 height=200/> | ||
</html> | </html> | ||
+ | |||
+ | ===Reference=== | ||
+ | 1. Mehta, K. K., Evitt, N. H. & Swartz, J. R. Chemical lysis of cyanobacteria. Journal of Biological Engineering 9, (2015). | ||
+ | |||
+ | 2. Chen, J. et al. Degradation of Microcystin-LR and RR by a Stenotrophomonas sp. Strain EMS Isolated from Lake Taihu, China. International Journal of Molecular Sciences 11, 896–911 (2010). | ||
+ | |||
+ | 3. Shimizu, K. et al. How microcystin-degrading bacteria express microcystin degradation activity. Lakes & Reservoirs: Research & Management 16, 169–178 (2011). | ||
+ | |||
+ | 4. Khan, F., He, M. & Taussig, M. J. Double-Hexahistidine Tag with High-Affinity Binding for Protein Immobilization, Purification, and Detection on Ni−Nitrilotriacetic Acid Surfaces. Analytical Chemistry 78, 3072–3079 (2006). | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Latest revision as of 23:29, 17 October 2018
Chimerical gene (lysozyme and mlrA)
This part is the fusion of two basic parts in order to combine two separate function simultaneously: lyse cyanobacterial wall and degrade MCLR simultaneously.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 1288
Illegal AgeI site found at 823 - 1000COMPATIBLE WITH RFC[1000]
Introduction
We have designed, based on our original goal, a basic part of chimeric lysozyme and mlrA gene with a linker sequence in between in order to create an enzyme that retain the both the function of lysing the cyanobacteria and denaturing their toxin MCLR. This part is intended to resolve the ultimate problem of cyanobacteria pollution. Therefore, the composite part contains our promoter, RBS, 6✖️His tag, lysozyme gene, a linker in between, mlrA gene and a terminator. During some of the experimental trials, we also managed to add a Sumo tag before the 6✖️His tag in order to increase the solubility of the enzyme.
Experience
Through Nested PCR, we are able to successfully infuse the lysozyme- mlrA gene into the PSB1C3 backbone. The linearized plasmid after the infusion is seen below on lane 2 and 8 of the gel. However, due to limited time, we were only able to focus on the function of lysozyme, which is part BBa_K2888002 and part BBa_K2888003.
Reference
1. Mehta, K. K., Evitt, N. H. & Swartz, J. R. Chemical lysis of cyanobacteria. Journal of Biological Engineering 9, (2015).
2. Chen, J. et al. Degradation of Microcystin-LR and RR by a Stenotrophomonas sp. Strain EMS Isolated from Lake Taihu, China. International Journal of Molecular Sciences 11, 896–911 (2010).
3. Shimizu, K. et al. How microcystin-degrading bacteria express microcystin degradation activity. Lakes & Reservoirs: Research & Management 16, 169–178 (2011).
4. Khan, F., He, M. & Taussig, M. J. Double-Hexahistidine Tag with High-Affinity Binding for Protein Immobilization, Purification, and Detection on Ni−Nitrilotriacetic Acid Surfaces. Analytical Chemistry 78, 3072–3079 (2006).