Difference between revisions of "Part:BBa K2549030"
(LC) |
|||
Line 14: | Line 14: | ||
[[File:sTF-test.png|none|360px|thumb|'''Interaction between transcriptional repressors and their binding sites.''' A degradable EGFP (d2EGFP) is produced downstream the promoter to indicate the output strength. Experiments were conducted and analyzed as previous reported<ref>http://2017.igem.org/Team:Fudan/Demonstrate</ref>. DBD, DNA binding domain which is zinc finger in our assay. SD, silencing-form transcriptional domain; we used KRAB for the experiments in this figure. RE, responsive elements. MFI, median fluorescence intensity.]] | [[File:sTF-test.png|none|360px|thumb|'''Interaction between transcriptional repressors and their binding sites.''' A degradable EGFP (d2EGFP) is produced downstream the promoter to indicate the output strength. Experiments were conducted and analyzed as previous reported<ref>http://2017.igem.org/Team:Fudan/Demonstrate</ref>. DBD, DNA binding domain which is zinc finger in our assay. SD, silencing-form transcriptional domain; we used KRAB for the experiments in this figure. RE, responsive elements. MFI, median fluorescence intensity.]] | ||
− | Flow cytometry results suggest that the transcriptional repressors can effectively inhibit the promoters with responsive elements. Please visit http://2018.igem.org/Team:Fudan/ | + | Flow cytometry results suggest that the transcriptional repressors can effectively inhibit the promoters with responsive elements. Please visit http://2018.igem.org/Team:Fudan/Demonstrate for a brief introduction of our project. |
Latest revision as of 18:46, 6 November 2018
8*ZF42.10-CMV
This part is one of the response elements of our amplifier, also executing the combiner function. 8*ZF42.10 binding sites (Part:BBa_K2549012) is assembled using two 4*ZF42.10 binding sites (Part:BBa_K2446005) with a biobrick scar between them. CMV (Part:BBa_K2549050) is a promotor which has a high-level constitutive expression. This part can switch off the expression of gene downstream after induced by our zinc finger-based transcription repressor.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Biology
Our characterization
Flow cytometry results suggest that the transcriptional repressors can effectively inhibit the promoters with responsive elements. Please visit http://2018.igem.org/Team:Fudan/Demonstrate for a brief introduction of our project.
Synthetic promotor operators regulated by artificial zinc finger-based transcription factors
Khalil AS et al have reported several synthetic promotor operators which can interact with artificial zinc finger-based transcription factors with high specificity and high orthogonality[2].