Difference between revisions of "Part:BBa K2549028"
(→Biology) |
|||
Line 12: | Line 12: | ||
<!-- Add more about the biology of this part here --> | <!-- Add more about the biology of this part here --> | ||
===Biology=== | ===Biology=== | ||
+ | =====Our characterization===== | ||
+ | [[File:aTF-test.png|none|420px|thumb|'''Interaction between transcriptional activators and their binding sites.''' A degradable EGFP (d2EGFP) is produced downstream the promoter to indicate the output strength. Experiments were conducted and analyzed as previous reported<ref>http://2017.igem.org/Team:Fudan/Demonstrate</ref>. DBD, DNA binding domain which is zinc finger in our assay. AD, activating-form transcriptional domain; we used VP64 for the experiments in this figure. RE, responsive elements. MFI, median fluorescence intensity.]] | ||
+ | |||
+ | Flow cytometry results suggest that the transcriptional activators can specifically activate the promoters with responsive elements, orthogonally. Please visit http://2018.igem.org/Team:Fudan/Demonstration for a brief introduction of our project. | ||
+ | |||
+ | |||
=====Synthetic promotor operators regulated by artificial zinc finger-based transcription factors===== | =====Synthetic promotor operators regulated by artificial zinc finger-based transcription factors===== | ||
Khalil AS et al have reported several synthetic promotor operators which can interact with artificial zinc finger-based transcription factors with high specificity and high orthogonality<ref>A synthetic biology framework for programming eukaryotic transcription functions. Khalil AS, Lu TK, Bashor CJ, ..., Joung JK, Collins JJ. Cell, 2012 Aug;150(3):647-58 PMID: 22863014; DOI: 10.1016/j.cell.2012.05.045</ref>. | Khalil AS et al have reported several synthetic promotor operators which can interact with artificial zinc finger-based transcription factors with high specificity and high orthogonality<ref>A synthetic biology framework for programming eukaryotic transcription functions. Khalil AS, Lu TK, Bashor CJ, ..., Joung JK, Collins JJ. Cell, 2012 Aug;150(3):647-58 PMID: 22863014; DOI: 10.1016/j.cell.2012.05.045</ref>. |
Revision as of 19:32, 17 October 2018
8*ZF43.8-minCMV
This part is one of the response elements of our amplifier, also executing the combiner function. 8*ZF43.8 binding (Part:BBa_K2446013) sites is assembled using two 4*ZF43.8 binding sites (Part:BBa_K2446006) with a biobrick scar between them. Minimal CMV (Part:BBa_K2549049) is a promotor providing very low basal expression and high maximal expression after induction. This part can switch on the expression of gene downstream after induced by our zinc finger-based transcription activator.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Biology
Our characterization
Flow cytometry results suggest that the transcriptional activators can specifically activate the promoters with responsive elements, orthogonally. Please visit http://2018.igem.org/Team:Fudan/Demonstration for a brief introduction of our project.
Synthetic promotor operators regulated by artificial zinc finger-based transcription factors
Khalil AS et al have reported several synthetic promotor operators which can interact with artificial zinc finger-based transcription factors with high specificity and high orthogonality[2].
Characterization
It works as we designed.
Flow cytometry results suggest that the transcriptional activators can effectively activate the responsive promoters with high specificity and high orthogonality.