Difference between revisions of "Part:BBa K2719001:Design"
(→References) |
|||
Line 21: | Line 21: | ||
===References=== | ===References=== | ||
+ | Laporte L., Jeffrey J., et. al.(2013).Tenascin C Promiscuously Binds Growth Factors via Its Fifth Fibronectin Type III-Like Domain. March 14, 2018, of NCBI Website: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630135/ |
Revision as of 02:42, 18 October 2018
Tenascin Domain V
According to the information given from the phD Aurora Antonio, a beta-pleated sheet structure (antiparallel one) has a high level of stability but less than alpha-Helix. Also, it is possible to observe that this structure has many Random Coil, giving to the domain more flexibilite. In figure 1 you can see tenascin protein structure and it is conformed by beta-pleated antiparallel sheets and Random Coil, so that gives tenascin flexibility and stability.
""
Figure 2. Tenascin 5 domain V 3D structure, modelled with Swiss-Model
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
Optimized for E.coli BL21.
Source
Genomic Library
References
Laporte L., Jeffrey J., et. al.(2013).Tenascin C Promiscuously Binds Growth Factors via Its Fifth Fibronectin Type III-Like Domain. March 14, 2018, of NCBI Website: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630135/