Difference between revisions of "Part:BBa K1062004"
(→Background of 2018 OUC-China' project) |
(→The result by flow cytometer) |
||
Line 85: | Line 85: | ||
[[Image:T--OUC-China--fluorescence.jpg|center|thumb|600px|'''Fig.6 Fluorescence intensity of sfGFP corresponding to each Csy4. Histograms show distribution of fluorescence in samples with Csy4-WT&miniToe-WT (Black), Csy4-Q104A&miniToe-WT (Orange), Csy4-Y176F&miniToe-WT (Red), Csy4-F155A&miniToe-WT (Blue), Csy4-H29A&miniToe-WT (Green). Crosscolumn number shows fold increase of sfGFP fluorescence.''']] | [[Image:T--OUC-China--fluorescence.jpg|center|thumb|600px|'''Fig.6 Fluorescence intensity of sfGFP corresponding to each Csy4. Histograms show distribution of fluorescence in samples with Csy4-WT&miniToe-WT (Black), Csy4-Q104A&miniToe-WT (Orange), Csy4-Y176F&miniToe-WT (Red), Csy4-F155A&miniToe-WT (Blue), Csy4-H29A&miniToe-WT (Green). Crosscolumn number shows fold increase of sfGFP fluorescence.''']] | ||
<br> | <br> | ||
− | [[Image:T--OUC-China-- | + | [[Image:T--OUC-China--JCPE.png|center|thumb|600px|'''Fig.7 The Gate Mean of flow cytometer. Histograms show the relative expression of sfGFP. The five test groups present different fluorescence intensities from high to low, which prove that they have different capabilities of cleavage. ''']] |
</p> | </p> | ||
Revision as of 23:48, 15 October 2018
Csy4
Csy4 is an enzyme that is essential to the creation of gRNAs. Csy4 is a member of CRISPR family.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 353
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI site found at 69
Usage and Biology
Conjugation Project
Synthetic Circuit
2018 OUC-China
Csy4 (Csy6f), a member of CRISPR family.
Csy4 is a 21.4 kDa protein that binds and cleaves at the 3' side of a stable RNA hairpin structure via sequence- and structure-specific contacts. Csy4 binds its substrate RNA with extremely high affinity and functions as a single-turnover enzyme. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. A highly basic a-helix docks into the major groove of the hairpin and contains multiple arginine residues that form a network of hydrogen.
Background of 2018 OUC-China' project
This year, we design a toolkit focused on translational regulation, which is composed of a RNA endoribonuclease (Csy4) and a RNA module (hairpin). In our project, the cleavage function of Cys4 releases a cis-repressive RNA module (crRNA, paired with RBS) from the masked ribosome binding site (RBS), which subsequently allows the downstream translation initiation. A Ribosome Binding Site (RBS) is an RNA sequence to which ribosomes can bind and initiate translation.
Proof of functions about Csy4 family
We have done three kinds of experiments to help us confirm the function of the Csy4 family. Our aim is to get some new Csy4 mutants with different cleavage capacity, so we specifically tested this aspect of them. For testing our system, we use the superfold green fluorescent protein (sfGFP) as our target gene. Our expectation is that the fluorescence intensities of sfGFP can vary upon the rates of Csy4s’ cleavage. That means we have improved four new parts which present various expression of target genes.
Prediction
Before the experiments, we have proved our ideas by model. The predication below shows the possibilities of different expression levels by different Csy4 mutants. So the model help us to get more information for our improvement deeply this year!
The qualitative experiments by fluorescent microscope
First, we have tested five different Csy4s by Fluorescent Stereo Microscope Leica M165 FC. We have cultured them in the solid medium in plates until the bacterial colonies can be observed by naked eyes. At that time, the sfGFP have been accumulated so we can see the fluorescence by microscope. As we can see in Fig.5, we have cultured the five different strains for same time which both have the same miniToe circuit but have totally different Csy4 mutants. From top to bottom in Fig.5, there are fluorescence images by fluorescent microscope which indicate Csy4-WT, Csy4-Q104A, Csy4-Y176F, Csy4-F155A and Csy4-H29A in sequence. We can observe visible distinctions in these images. The fluorescence intensities decrease one by one from top to bottom which means the Csy4s’ capabilities of cleavage decrease one by one. So the images indicate the Csy4-WT has the strongest capability of cleavage, while the Csy4-H29A is a kind of dead-Csy4 (dCsy4) which is hardly to find the fluorescence by microscope. The qualitative experiment is a basis of further experiments.
The result by flow cytometer
The qualitative experiment is not enough to analyze Csy4s. So we test our system by flow cytometer after we cultured them for ten hours in M9 medium. The expression of sfGFP in five groups are showed in Fig.6, and they are Csy4-WT&miniToe-WT, Csy4-Q104A&miniToe-WT, Csy4-Y176F&miniToe-WT, Csy4-F155A&miniToe-WT and Csy4-H29A&miniToe-WT. We find that 5 groups’ fluorescence intensities have an obvious order from Csy4-WT to Csy4-H29A, which means the capabilities of cleavage decrease one by one. Their order goes from strong to weak is Csy4-WT, Csy4-Q104A, Csy4-Y176F, Csy4-F155A and Csy4-H29A. As the Fig.6 shown, the relative expression level can be measured by flow cytometer at the same time.
The result by microplate reader
Besides all the works we have done before, we also need to know more information about the Csy4s we design. Even though we have known that our Csy4 mutants have differentiated expression level after ten-hour-culture, the expression of whole cultivation period is also a reference for us to know if our system can work as expectation.
In summary
This year, we used point mutations to redesign four mutants on the basis of Csy4(BBa_K1062004) which are Csy4-Q104A(BBa_K2615004), Csy4-Y176F(BBa_K2615005), Csy4-F155A(BBa_K2615006) and Csy4-H29A(BBa_K2615007). The capabilities of cleavage and recognition are different for each Csy4 mutants, and we name them the Csy4 family. The combination of the Csy4 family members and the miniToe family members constitute a post-transcriptional regulatory toolkit for achieving different expression levels of target genes.
|