Difference between revisions of "Part:BBa K2599017"

Line 15: Line 15:
 
With the cooperation of productivity model and curcumin transformation model, we can perfectly predict the crop productivity and maintain balance soil microbiota.
 
With the cooperation of productivity model and curcumin transformation model, we can perfectly predict the crop productivity and maintain balance soil microbiota.
  
+
 
 +
 
 +
<p style="padding-top:20px;font-size:20px"><b>Introduction</b></p>
 +
 
 +
===Curcumin===
 +
 
 +
Curcumin is a natural lipid-soluble yellow compound from the plant Curcuma. It is a potent antioxidant as well as antitumorigenic and anti- inflammatory molecule. Although Curcumin has been proved its therapeutic efficacy against many human ailments, but the problem is it is hard to absorb by human cells. To solve this problem, a paper has discovered a curcumin carrier protein called αS1-casein, shows high binding affinity with curcumin. We then utilize this property of αS1-casein to create a curcumin bio-sensor.
 +
 
 +
 
 +
===αS1-casein===
 +
 
 +
Casiens are proteins commonly found in mammalian milk and is a mixture of four phosphoprotein. One of the phosphoprotein is αS1-casein, which contains no disulfide bonds and relatively little tertiary structure. As their primary function is nutritional, binding large amounts of calcium, zinc and other biologically important metals, amino acid substitutions or deletions have little impact on function.
 +
 
 +
 
 +
 
 +
<p style="padding-top:10px;font-size:20px;"><b>Experiment</b></p>
 +
 
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===

Revision as of 05:38, 14 October 2018


T7 Promoter+RBS+GS linker+αS1-casein

NCTU_Formosa 2018 designed a Biobrick contains αS1-casein [http://2014.igem.org/Team:SF_Bay_Area_DIYbio/Parts#Alpha-s1_casein_.28CSN1S1.29] and a GS linker (BBa_K1974030) ahead as a Curcumin biosensor.



Figure 1. Composite part of αS1-casein


The goal of our system is to regulate the soil microbiota in order to reach the maximum crop productivity. To accurately predict the curcumin content from NPK content in soil, we create a bio-sensor. This sensor can precisely detect the curcumin containment in turmeric. After the detection of curcumin, results can be fitted into our productivity model and utilize artificial intelligent to increase the accuracy. With the cooperation of productivity model and curcumin transformation model, we can perfectly predict the crop productivity and maintain balance soil microbiota.


Introduction

Curcumin

Curcumin is a natural lipid-soluble yellow compound from the plant Curcuma. It is a potent antioxidant as well as antitumorigenic and anti- inflammatory molecule. Although Curcumin has been proved its therapeutic efficacy against many human ailments, but the problem is it is hard to absorb by human cells. To solve this problem, a paper has discovered a curcumin carrier protein called αS1-casein, shows high binding affinity with curcumin. We then utilize this property of αS1-casein to create a curcumin bio-sensor.


αS1-casein

Casiens are proteins commonly found in mammalian milk and is a mixture of four phosphoprotein. One of the phosphoprotein is αS1-casein, which contains no disulfide bonds and relatively little tertiary structure. As their primary function is nutritional, binding large amounts of calcium, zinc and other biologically important metals, amino acid substitutions or deletions have little impact on function.


Experiment

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]