Difference between revisions of "Part:BBa K2675095:Design"

Line 15: Line 15:
 
===References===
 
===References===
 
[1] Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R. Communication between viruses guides lysis-lysogeny decisions. Nature (2017) 541, 488-493.
 
[1] Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R. Communication between viruses guides lysis-lysogeny decisions. Nature (2017) 541, 488-493.
 +
 +
[2] Solovyev V, Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (Ed. R.W. Li), Nova Science Publishers (2011) p. 61-78.
 +
 +
[3] Gautheret D, Lambert A. Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol (2001) 313, 1003-1011.
 +
 +
[4] Macke T, Ecker D, Gutell R, Gautheret D, Case DA and Sampath R. RNAMotif – A new RNA secondary structure definition and discovery algorithm. Nucleic Acids Res (2001) 29, 4724–4735.
 +
 +
[5] Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods (2013) 10, 659-664.
 +
 +
[6] Herskowitz I, Hagen D. The lysis-lysogeny decision of phage lambda: explicit programming and responsiveness. Annu Rev Genet (1980) 14, 399-445.

Revision as of 22:57, 17 October 2018


pAimX(full-noTerminator-v6) promoter of phage phi3T


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 40
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 40
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 40
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 40
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

pAimX(full) promoter of phage phi3T (BBa_K2675020) with mutations in the putative terminator. These mutations disrupted also the pAimX(2) putative promoter.

Source

selection from a random sequence library derived by PCR with degenerate primers on BBa_K2675020

References

[1] Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R. Communication between viruses guides lysis-lysogeny decisions. Nature (2017) 541, 488-493.

[2] Solovyev V, Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (Ed. R.W. Li), Nova Science Publishers (2011) p. 61-78.

[3] Gautheret D, Lambert A. Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol (2001) 313, 1003-1011.

[4] Macke T, Ecker D, Gutell R, Gautheret D, Case DA and Sampath R. RNAMotif – A new RNA secondary structure definition and discovery algorithm. Nucleic Acids Res (2001) 29, 4724–4735.

[5] Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods (2013) 10, 659-664.

[6] Herskowitz I, Hagen D. The lysis-lysogeny decision of phage lambda: explicit programming and responsiveness. Annu Rev Genet (1980) 14, 399-445.