Difference between revisions of "Part:BBa K2549009"
Line 3: | Line 3: | ||
<partinfo>BBa_K2549009 short</partinfo> | <partinfo>BBa_K2549009 short</partinfo> | ||
− | This part is the N-terminal fragment of Cfa. Cfa is a consensus sequence from an alignment of 73 naturally occurring DnaE inteins that are predicted to have fast splicing rates. Cfa demonstrates both rapid protein splicing and unprecedented thermal and chaotropic durability. Besides, when the | + | This part is the N-terminal fragment of Cfa. Split intein is a useful protein engineering approach to combine signals<ref>Protein trans-splicing and its use in structural biology: opportunities and limitations. Volkmann G, Iwaï H. Mol Biosyst, 2010 Nov;6(11):2110-21 PMID: 20820635; DOI: 10.1039/c0mb00034e</ref><ref>Cell-Based Biosensors Based on Intein-Mediated Protein Engineering for Detection of Biologically Active Signaling Molecules. Jeon H, Lee E, Kim D, ..., Kim S, Kwon Y. Anal Chem, 2018 Aug;90(16):9779-9786 PMID: 30028129; DOI: 10.1021/acs.analchem.8b01481</ref>. Cfa is a consensus sequence from an alignment of 73 naturally occurring DnaE inteins that are predicted to have fast splicing rates. Cfa demonstrates both rapid protein splicing and unprecedented thermal and chaotropic durability. Besides, when the CfaN is fused to other proteins, it exhibits higher expression levels than other N-terminal fusions<ref>Improved protein splicing using embedded split inteins. Gramespacher JA, Stevens AJ, Thompson RE, Muir TW. Protein Sci, 2018 Mar;27(3):614-619 PMID: 29226478; DOI: 10.1002/pro.3357</ref><ref>Design of a Split Intein with Exceptional Protein Splicing Activity. Stevens AJ, Brown ZZ, Shah NH, ..., Cowburn D, Muir TW. J Am Chem Soc, 2016 Feb;138(7):2162-5 PMID: 26854538; DOI: 10.1021/jacs.5b13528</ref><ref>A promiscuous split intein with expanded protein engineering applications. Stevens AJ, Sekar G, Shah NH, ..., Cowburn D, Muir TW. Proc Natl Acad Sci U S A, 2017 Aug;114(32):8538-8543 PMID: 28739907; DOI: 10.1073/pnas.1701083114</ref>. CfaN is used in our amplifier to accomplish some complex logic functions. It can also be used by other iGEM teams to assembly their intein-based protein libraries. |
− | |||
− | |||
− | |||
− | |||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
<partinfo>BBa_K2549009 SequenceAndFeatures</partinfo> | <partinfo>BBa_K2549009 SequenceAndFeatures</partinfo> | ||
+ | |||
+ | |||
+ | <!-- Add more about the biology of this part here --> | ||
+ | ===Usage and Biology=== | ||
+ | TBA | ||
Line 16: | Line 17: | ||
===Functional Parameters=== | ===Functional Parameters=== | ||
<partinfo>BBa_K2549009 parameters</partinfo> | <partinfo>BBa_K2549009 parameters</partinfo> | ||
− | + | --> | |
+ | |||
+ | |||
+ | ===References=== |
Revision as of 03:40, 7 October 2018
split intein Cfa N
This part is the N-terminal fragment of Cfa. Split intein is a useful protein engineering approach to combine signals[1][2]. Cfa is a consensus sequence from an alignment of 73 naturally occurring DnaE inteins that are predicted to have fast splicing rates. Cfa demonstrates both rapid protein splicing and unprecedented thermal and chaotropic durability. Besides, when the CfaN is fused to other proteins, it exhibits higher expression levels than other N-terminal fusions[3][4][5]. CfaN is used in our amplifier to accomplish some complex logic functions. It can also be used by other iGEM teams to assembly their intein-based protein libraries.
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
TBA
References
- ↑ Protein trans-splicing and its use in structural biology: opportunities and limitations. Volkmann G, Iwaï H. Mol Biosyst, 2010 Nov;6(11):2110-21 PMID: 20820635; DOI: 10.1039/c0mb00034e
- ↑ Cell-Based Biosensors Based on Intein-Mediated Protein Engineering for Detection of Biologically Active Signaling Molecules. Jeon H, Lee E, Kim D, ..., Kim S, Kwon Y. Anal Chem, 2018 Aug;90(16):9779-9786 PMID: 30028129; DOI: 10.1021/acs.analchem.8b01481
- ↑ Improved protein splicing using embedded split inteins. Gramespacher JA, Stevens AJ, Thompson RE, Muir TW. Protein Sci, 2018 Mar;27(3):614-619 PMID: 29226478; DOI: 10.1002/pro.3357
- ↑ Design of a Split Intein with Exceptional Protein Splicing Activity. Stevens AJ, Brown ZZ, Shah NH, ..., Cowburn D, Muir TW. J Am Chem Soc, 2016 Feb;138(7):2162-5 PMID: 26854538; DOI: 10.1021/jacs.5b13528
- ↑ A promiscuous split intein with expanded protein engineering applications. Stevens AJ, Sekar G, Shah NH, ..., Cowburn D, Muir TW. Proc Natl Acad Sci U S A, 2017 Aug;114(32):8538-8543 PMID: 28739907; DOI: 10.1073/pnas.1701083114