Difference between revisions of "Part:BBa K2819110"
Line 2: | Line 2: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K2819110 short</partinfo> | <partinfo>BBa_K2819110 short</partinfo> | ||
+ | This part contains the coding sequence of mRFP put under control of the stress promoter PhtpG1. The promoter, PhtpG1, was carefully chosen because of sensitivity to synthetic construct-induced burden in E. coli. This distinct characteristic is especially valuable to our system because we were interested in quantifying real-time levels of stress generated by the expression of externally introduced constructs. By quantifying cell stress via fluorescence, recombinant protein production can be optimized by the user simply by reducing cell stress i.e. switching off protein production (in our case, this can be done by turning on blue light). <br><br> | ||
− | + | Additionally, according to Ceroni et al. (2018), PhtpG1 displayed the best on/off characteristic out of the 4 promoters that were being investigated (htpG1, htpG2, groSL, and ibpAB). This feature allows the stress-reporting module, PhtpG1-mRFP, to not only respond rapidly, but also to maintain its receptivity in a dynamic cell microenvironment. <br> | |
+ | <br> | ||
+ | The depletion of finite cellular resources during the expression of synthetic constructs constitutes an unwanted burden, hampering the growth and expected the performance of engineered cells in an unpredictable manner. Stress regulation has been shown to enable cells to outperform their unregulated counterparts in terms of protein yield. | ||
+ | <br> | ||
+ | <br> | ||
+ | For more information about the burden-driven feedback mechanism, please visit http://2018.igem.org/Team:NUS_Singapore-A. | ||
+ | <br> | ||
+ | <br> | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here |
Revision as of 12:27, 12 October 2018
PhtpG1 Burden-Driven Promoter
This part contains the coding sequence of mRFP put under control of the stress promoter PhtpG1. The promoter, PhtpG1, was carefully chosen because of sensitivity to synthetic construct-induced burden in E. coli. This distinct characteristic is especially valuable to our system because we were interested in quantifying real-time levels of stress generated by the expression of externally introduced constructs. By quantifying cell stress via fluorescence, recombinant protein production can be optimized by the user simply by reducing cell stress i.e. switching off protein production (in our case, this can be done by turning on blue light).
Additionally, according to Ceroni et al. (2018), PhtpG1 displayed the best on/off characteristic out of the 4 promoters that were being investigated (htpG1, htpG2, groSL, and ibpAB). This feature allows the stress-reporting module, PhtpG1-mRFP, to not only respond rapidly, but also to maintain its receptivity in a dynamic cell microenvironment.
The depletion of finite cellular resources during the expression of synthetic constructs constitutes an unwanted burden, hampering the growth and expected the performance of engineered cells in an unpredictable manner. Stress regulation has been shown to enable cells to outperform their unregulated counterparts in terms of protein yield.
For more information about the burden-driven feedback mechanism, please visit http://2018.igem.org/Team:NUS_Singapore-A.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]