Difference between revisions of "Part:BBa K2273111"

Line 63: Line 63:
 
<html>
 
<html>
 
<figure>
 
<figure>
<figure style="width:49%;float:left;">
+
<figure style="width:60%;float:left;">
 
<figcaption><b>Table 2: Strains of interest with their names and important genotype remarks for differentiation.</b></figcaption>
 
<figcaption><b>Table 2: Strains of interest with their names and important genotype remarks for differentiation.</b></figcaption>
 
       <img src="https://static.igem.org/mediawiki/2017/f/f6/T--TU_Dresden--P_Biosensor_Table5_genotypeBiosensors.png"width="80%">
 
       <img src="https://static.igem.org/mediawiki/2017/f/f6/T--TU_Dresden--P_Biosensor_Table5_genotypeBiosensors.png"width="80%">

Revision as of 20:07, 30 October 2017


PblaZ Promoter controlling gene expression of blaZ in S. aureus

The PblaZ promoter is a part used in the Beta-Lactam Biosensor project of [http://2017.igem.org/Team:TU_Dresden iGEM Team TU Dresden 2017 (EncaBcillus - It's a trap!)].

This part is a composite of the bla operon found in Staphylococcus aureus and constitutes the promoter regulating gene expression of the gene blaZ, coding for a beta-lactamase. If the microorganism is exposed to beta-lactam antibiotics, a receptor, named blaR1 [1], senses the compound and a signal is transduced into the cytoplasm. Subsequently, the BlaI repressor protein [2] is degraded and frees the PblaZ promoter. Following, the blaZ gene is transcribed and confers resistance to the antibiotic.

This part features the RFC10 prefix and suffix:

Prefix with EcoRI, NotI, XbaI GAATTCGCGGCCGCTTCTAGA
Suffix with SpeI, NotI and PstI ACTAGTAGCGGCCGCTGCAGA

Sites of restriction enzymes generating compatible overhangs are indicated by sharing one color. (EcoRI and PstI are marked in blue, NotI in green, XbaI and SpeI in red)

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Beta-Lactam Biosensor

Worldwide, multidrug-resistant bacteria are on the rise and provoke the intensive search for novel effective compounds. To simplify the search for new antibiotics and to track the antibiotic pollution in water samples, whole-cell biosensors constitute a helpful investigative tool. In this part of EncaBcillus, we developed a functional and independent heterologous Beta-lactam biosensor in Bacillus subtilis. These specialised cells are capable of sensing a compound of the beta-lactam family and will respond by the production of an easily measurable luminescence signal. We analysed the detection range and sensitivity of the biosensor in response to six different Beta-lactam antibiotics from various subclasses. The evaluated biosensor was then encapsulated into Peptidosomes to proof the concept of our project EncaBcillus. The encapsulation of engineered bacteria allows an simplified handling and increased biosafety, potentially raising the chances for their application in e.g. sewage treatment plants.

Design of the Biosensor

To achieve our goal of encapsulating bacteria into Peptidosomes that can sense antibiotics of the beta-lactam family, we first needed to develop a reliable biosensor strain. In Staphylococcus aureus the bla-operon encodes a one-component system, which is responsible for sensing and mediating resistance against beta-lactam antibiotics. The idea was to transfer the regulatory elements of this operon to Bacillus subtilis and replace the native output – being the beta-lactamase BlaZ – by an easy detectable signal. Thus, making Bacillus subtilis a Beta-lactam sensing biosensor. (see Figure 1).

Figure 1: Overall concept showing the components and the molecular mechanism of the biosensor in B. subtilis.Upon binding of a beta-lactam to the receptor BlaR1 (1), due to the receptors c-terminal proteolytic activity, the repressor BlaI is degraded and frees the target promoter (2) enabling the expression of an easy detectable reporter (3).

For the creation of our biosensor in B. subtilis, the bla-operon from S. aureus was split into three genetic constructs: (A) The Receptor gene blaR1 under control of a strong constitutive promotor (Pveg), (B) the Repressor gene blaI under control moderate strong constitutive promoter (PlepA) and the target promoter PblaZ in front of the lux-operon (luxABCDE). In addition, an inducible version of the blaR1 construct was made by inserting the PxylA promoter upstream of the blaR1 gene. [1]

The following results demonstrate the promoter activity of PblaZ in the context of our biosensor. We could observe, that this promoter is very sensitive and strong. These findings are supported by the data below:


Evaluation of the promoter activity

During this project, we generated several strains to investigate the functionality of the heterologous constructs constituting the biosensor in Bacillus subtilis [file strains?]. This result section though will focus on the evaluation of the strains shown in Table 5 as these represent the most interesting ones.

Table 1: Antibiotic concentrations in [µg µl-1] (final concentration in the well) used in all further plate reader experiments.

In our first experiment, we performed plate reader assays in a 96 well plate format and measured growth (OD600) and luminescence output for 18 hours every 5 minutes. Induction with the Beta-lactam antibiotics occurred after 1 hour. All strains have been tested in triplicates under the same conditions. Strains with the genotype penP::kanR have been induced with lower concentrations compared to the wild type strain W168 (see Table 1 above).

After induction, we anticipate a strong increase in luminescence signal for the biosensor strains. The control strain W168 (wild type) and control 1, will presumably not show any luminescence output, while the positive control 2 is expected to show a steady luminescence signal regardless of the presence of any antibiotic compound.

Table 2: Strains of interest with their names and important genotype remarks for differentiation.

As shown in Figure 2, the wildtype W168 (black with white dots) shows no increase in RLU/OD600 values when induced with the different Beta-lactam antibiotics and controls. Control 1 (black tight stripes) behaves similarly to the wild type strain. The slight decrease of control 2 (light grey) in the bar chart where induction with ampicillin and carbenicillin happened, is mostly explained by the high growth inhibition caused by the chosen concentrations for W168 (with functional Beta-lactamase PenP). Most of the times, the constitutive expression of the lux operon resulted in an RLU/OD600 of over 1.3 million for control 2 (see Figure 2).

Figure 2: RLU/OD600 values of the different biosensors and the controls are shown 2 hours after induction with the six beta-lactams, bacitracin and dH2O. Graphs show the Wild-type (black), control 1 (light gray), control 2 (dark gray), biosensor 1 (pink), biosensor 2 (purple), biosensor 3 (white and black) and biosensor 3 Xylose induced (dark blue). Luminescence (RLU/OD600) output is shown two hours after beta-lactam antibiotic induction. Mean values and standard deviation are depicted from at least three biological replicates.

Biosensor 1 gives an overall good signal for all Beta-lactam antibiotics tested, but also shows a higher basal activity in absence of the Beta-lactam compounds of 40.000- 90.000 RLU/OD600 (see Figure 5, bar chart with bacitracin and dH2O). Further, we could observe a difference in signal intensity dependent on the Beta-lactam antibiotic tested. Therefore, biosensor 1 gives the highest signal in presence of penicillin G, cefoxitin and cefoperazone with up to 2.7 million RLU/OD600. Ampicillin and penicillin G again show a weaker increase in signal produced by biosensor 1, which could be due to the same reason as for control 2 (see Figure 2).

For biosensor 2, the detection range and sensitivity is comparable to biosensor 1, This strain strongly senses cefoxitin, ampicillin and cefoperazone reaching up to 2.4 million RLU/OD600. Even the basal activity of the PblaZ promoter in biosensor 2, as shown in the bar charts with bacitracin and dH2O, conforms with the one from biosensor 1.