Difference between revisions of "Part:BBa K2300001"

(Part Verification)
(Biology & Literature)
Line 16: Line 16:
 
The Macquarie Australia iGEM team have successfully transformed <i>E. coli</i> (DH5α) with a hydrogenase gene cluster capable of converting glucose into hydrogen gas. This was achieved with our main bio-brick submission, the Hydrogen Gas Producing Gene Cluster.
 
The Macquarie Australia iGEM team have successfully transformed <i>E. coli</i> (DH5α) with a hydrogenase gene cluster capable of converting glucose into hydrogen gas. This was achieved with our main bio-brick submission, the Hydrogen Gas Producing Gene Cluster.
  
This gene cluster translates to a complex consisting of the [FeFe] hydrogenase enzyme (Hyd1) (Mulder et al., 2011), ferredoxin, ferredoxin-NADPH-reductase (FNR) and the maturation enzymes (HydEF and HydG). All gene codes were sourced from the eukaryote <i>Chlamydomonas reinhardtii</i>. In the original organism these enzymes represent the final step in the photosynthetic pathway utilised for energy transduction from sunlight. By transforming <i>E. coli</i> with this Hydrogen Gas Producing Gene Cluster, these enzymes work cohesively to convert glucose into hydrogen gas whilst avoiding the detrimental emissions formed during current hydrogen gas production processes. We hope that bacteria transformed with this bio-brick will become a viable source of hydrogen and contribute to the growing number of zero emission alternative renewable fuels providing electricity to address the global energy crisis.
+
This gene cluster translates to a complex consisting of the [FeFe] hydrogenase enzyme (Hyd1) (Mulder et al., 2011), ferredoxin, ferredoxin-NADP+-reductase (FNR) and the maturation enzymes (HydEF and HydG). All gene codes were sourced from the eukaryote <i>Chlamydomonas reinhardtii</i>. In the original organism these enzymes represent the final step in the photosynthetic pathway utilised for energy transduction from sunlight. By transforming <i>E. coli</i> with this Hydrogen Gas Producing Gene Cluster, these enzymes work cohesively to convert glucose into hydrogen gas whilst avoiding the detrimental emissions formed during current hydrogen gas production processes. We hope that bacteria transformed with this bio-brick will become a viable source of hydrogen and contribute to the growing number of zero emission alternative renewable fuels providing electricity to address the global energy crisis.
  
 
===Part Verification===
 
===Part Verification===

Revision as of 10:27, 28 October 2017


Hydrogen Gas Producing Gene Cluster

The final composite part to create hydrogen

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    INCOMPATIBLE WITH RFC[21]
    Unknown
  • 23
    INCOMPATIBLE WITH RFC[23]
    Unknown
  • 25
    INCOMPATIBLE WITH RFC[25]
    Unknown
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 6015
    Illegal BsaI.rc site found at 3635
    Illegal BsaI.rc site found at 3747

Biology & Literature

The Macquarie Australia iGEM team have successfully transformed E. coli (DH5α) with a hydrogenase gene cluster capable of converting glucose into hydrogen gas. This was achieved with our main bio-brick submission, the Hydrogen Gas Producing Gene Cluster.

This gene cluster translates to a complex consisting of the [FeFe] hydrogenase enzyme (Hyd1) (Mulder et al., 2011), ferredoxin, ferredoxin-NADP+-reductase (FNR) and the maturation enzymes (HydEF and HydG). All gene codes were sourced from the eukaryote Chlamydomonas reinhardtii. In the original organism these enzymes represent the final step in the photosynthetic pathway utilised for energy transduction from sunlight. By transforming E. coli with this Hydrogen Gas Producing Gene Cluster, these enzymes work cohesively to convert glucose into hydrogen gas whilst avoiding the detrimental emissions formed during current hydrogen gas production processes. We hope that bacteria transformed with this bio-brick will become a viable source of hydrogen and contribute to the growing number of zero emission alternative renewable fuels providing electricity to address the global energy crisis.

Part Verification

The entire Hydrogen Gas Producing Gene Cluster was sequenced and confirmed once it had been ligated together.

Discuss Clark electrode and Octopus here.

Protein information

Ferredoxin
Mass: 13.0 kDa
Sequence:
MAMRSTFAARVGAKPAVRGARPASRMSCMAYKVTLKTPSGDKTIECPADTYILDAAEEAGLDLPYSCRAGACSSCAGKVAAGTVDQSDQSFLDDAQMGNGFV LTCVAYPTSDCTIQTHQEEALY

Ferredoxin Reductase (FNR)
Mass: 38.27 kDa
Sequence:
MQTVRAPAASGVATRVAGRRMCRPVAATKASTAVTTDMSKRTVPTKLEEGEMPLNTYSNKAPFKAKVRSVEKITGPKATGETCHIIIETEGKIPFWEGQSYGVIPP GTKINSKGKEVPHGTRLYSIASSRYGDDFDGQTASLCVRRAVYVDPETGKEDPAKKGLCSNFLCDATPGTEISMTGPTGKVLLLPADANAPLICVATGTGIAPFRS FWRRCFIENVPSYKFTGLFWLFMGVANSDAKLYDEELQAIAKAYPGQFRLDYALSREQNNRKGGKMYIQDKVEEYADEIFDLLDNGAHMYFCGLKGMMPGIQD MLERVAKEKGLNYEEWVEGLKHKNQWHVEVY

Hyd1
Mass: 53.13 kDa
Sequence:
MSALVLKPCAAVSIRGSSCRARQVAPRAPLAASTVRVALATLEAPARRLGNVACAAAAPAAEAPLSHVQQALAELAKPKDDPTRKHVCVQVAPAVRVAIAETLGLAPGATT PKQLAEGLRRLGFDEVFDTLFGADLTIMEEGSELLHRLTEHLEAHPHSDEPLPMFTSCCPGWIAMLEKSYPDLIPYVSSCKSPQMMLAAMVKSYLAEKKGIAPKDMVMV SIMPCTRKQSEADRDWFCVDADPTLRQLDHVITTVELGNIFKERGINLAELPEGEWDNPMGVGSGAGVLFGTTGGVMEAALRTAYELFTGTPLPRLSLSEVRGMDGIKET NITMVPAPGSKFEELLKHRAAARAEAAAHGTPGPLAWDGGAGFTSEDGRGGITLRVAVANGLGNAKKLITKMQAGEAKYDFVEIMACPAGCVGGGGQPRSTDKAITQKR QAALYNLDEKSTLRRSHENPSIRELYDTYLGEPLGHKAHELLHTHYVAGGVEEKDEKK

HydEF
Mass: 121.95 kDa
Sequence:
MAHSLSAHSRQAGDRKLGAGAASSRPSCPSRRIVRVAAHASASKATPDVPVDDLPPAHARAAVAAANRRARAMASAEAAAETLGDFLGLGKGGLSP GATANLDREQVLGVLEAVWRRGDLNLERALYSHANAVTNKYCGGGVYYRGLVEFSNICQNDCSYCGIRNNQKEVWRYTMPVEEVVEVAKWALENGI RNIMLQGGELKTEQRLAYLEACVRAIREETTQLDLEMRARAASTTTAEAAASAQADAEAKRGEPELGVVVSLSVGELPMEQYERLFRAGARRYLIRIET SNPDLYAALHPEPMSWHARVECLRNLKKAGYMLGTGVMVGLPGQTLHDLAGDVMFFRDIKADMIGMGPFITQPGTPATDKWTALYPNANKNSHMK SMFDLTTAMNALVRITMGNVNISATTALQAIIPTGREIALERGANVVMPILTPTQYRESYQLYEGKPCITDTAVQCRRCLDMRLHSVGKTSAAGVWGDPA SFLHPIVGVPVPHDLSSPALAAAASADFHEVGAGPWNPIRLERLVEVPDRYPDPDNHGRKKAGAGKGGKAHDSHDDGDHDDHHHHHGAAPAGAAA GKGTGAAAIGGGAGASRQRVAGAAAASARLCAGARRAGRVVASPLRPAAACRGVAVKAAAAAAGEDAGAGTSGVGSNIVTSPGIASTTAHGVPRINI GVFGVMNAGKSTLVNALAQQEACIVDSTPGTTADVKTVLLELHALGPAKLLDTAGLDEVGGLGDKKRRKALNTLKECDVAVLVVDTDTAAAAIKSGRLA EALEWESKVMEQAHKYNVSPVLLLNVKSRGLPEAQAASMLEAVAGMLDPSKQIPRMSLDLASTPLHERSTITSAFVKEGAVRSSRYGAPLPGCLPRW SLGRNARLLMVIPMDAETPGGRLLRPQAQVMEEAIRHWATVLSVRLDLDAARGKLGPEACEMERQRFDGVIAMMERNDGPTLVVTDSQAIDVVHPW TLDRSSGRPLVPITTFSIAMAYQQNGGRLDPFVEGLEALETLQDGDRVLISEACNHNRITSACNDIGMVQIPNKLEAALGGKKLQIEHAFGREFPELESG GMDGLKLAIHCGGCMIDAQKMQQRMKDLHEAGVPVTNYGVFFSWAAWPDALRRALEPWGVEPPVGTPATPAAAPATAASGV

HydG
Mass: 63.74 kDa
Sequence:
MSVPLQCNAGRLLAGQRPCGVRARLNRRVCVPVTAHGKASATREYAGDFLPGTTISHAWSVERETHHRYRNPAEWINEAA IHKALETSKADAQDAGRVREILAKAKEKAFVTEHAPVNAESKSEFVQGLTLEECATLINVDSNNVELMNEIFDTALAIKE RIYGNRVVLFAPLYIANHCMNTCTYCAFRSANKGMERSILTDDDLREEVAALQRQGHRRILALTGEHPKYTFDNFLHAVN VIASVKTEPEGSIRRINVEIPPLSVSDMRRLKNTDSVGTFVLFQETYHRDTFKVMHPSGPKSDFDFRVLTQDRAMRAGLD DVGIGALFGLYDYRYEVCAMLMHSEHLEREYNAGPHTISVPRMRPADGSELSIAPPYPVNDADFMKLVAVLRIAVPYTGM ILSTRESPEMRSALLKCGMSQMSAGSRTDVGAYHKDHTLSTEANLSKLAGQFTLQDERPTNEIVKWLMEEGYVPSWCTAC YRQGRTGEDFMNICKAGDIHDFCHPNSLLTLQEYLMDYADPDLRKKGEQVIAREMGPDASEPLSAQSRKRLERKMKQVLE GEHDVYL

References

MULDER, D. W., SHEPARD, E. M., MEUSER, J. E., JOSHI, N., KING, P. W., POSEWITZ, M. C., BRODERICK, J. B. & PETERS, J. W. 2011. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure, 19, 1038-1052.