|
|
Line 1: |
Line 1: |
− | __NOTOC__
| |
− | <partinfo>BBa_K2328003 short</partinfo>
| |
| | | |
− | <!-- Add more about the biology of this part here
| |
− | ===Usage and Biology===
| |
− |
| |
− | <!-- -->
| |
− | <span class='h3bb'>Sequence and Features</span>
| |
− | <partinfo>BBa_K2328003 SequenceAndFeatures</partinfo>
| |
− |
| |
− |
| |
− | <!-- Uncomment this to enable Functional Parameter display
| |
− | ===Functional Parameters===
| |
− | <partinfo>BBa_K2328003 parameters</partinfo>
| |
− | <!-- -->
| |
− |
| |
− | ===Usage===
| |
− | In order to fluoresce, smURFP must be combined with biliverdin (BV). HO-1 is the gene of the precursor of biliverdin. HO-1 can use the materials of the E.coil to produce biliverdin. So we want to construct a plasmid which can both express the smURFP gene and HO-1 gene. Through this construction, we can achieve the co-expression in the E.coil. Both the smURFP and biliverdin are produced by E.coil, so they can connect directly within the E.coil to produce fluorescence under the wavelength of 642 nm without adding BV additonally.
| |
− |
| |
− | ===Biology===
| |
− | One of our methods is co-expression. Because the HO-1 needs to use oxygen to produce BV, it is adoptable in E.coil which is a kind of facultative anaerobic bacteria. And the HO-1 gene is from the Block Library. Both the smURFP and biliverdin are produced by E.coil, so they can connect directly within the E.coil and we can achieve the co-expression in the E.coil.
| |
− | ===Reference===
| |
− | [1] Dong Chen , Jason D Brown , Yukie Kawasaki , Jerry Bommer and Jon Y Takemoto . Scalable production of biliverdin IXα by Escherichia coli. [J].BMC Biotechnology, 2012.
| |