Difference between revisions of "Part:BBa K2259000"

Line 40: Line 40:
 
[[Image:Cole1 horizontal cropped.png|center|500px|thumb|<b>Figure 1. </b> Guide to SynORI - framework for multiplasmid systems. CLICK HERE TO SEE THE WHOLE COLLECTION (link needed) (Citation needed)]]
 
[[Image:Cole1 horizontal cropped.png|center|500px|thumb|<b>Figure 1. </b> Guide to SynORI - framework for multiplasmid systems. CLICK HERE TO SEE THE WHOLE COLLECTION (link needed) (Citation needed)]]
 
SynORI is a framework for multi-plasmid systems created by ''Vilnius-Lithuania 2017'' which enables quick and easy workflow with multiple plasmids, while also allowing to freely pick and modulate copy number for every unique plasmid group! Read more about [http://2017.igem.org/Team:Vilnius-Lithuania SynORI here]!
 
SynORI is a framework for multi-plasmid systems created by ''Vilnius-Lithuania 2017'' which enables quick and easy workflow with multiple plasmids, while also allowing to freely pick and modulate copy number for every unique plasmid group! Read more about [http://2017.igem.org/Team:Vilnius-Lithuania SynORI here]!
 +
  
 
===Regulative RNA II molecule in SynORI===
 
===Regulative RNA II molecule in SynORI===
 
RNA II gene is foundational and central biobrick of SynORI system.  
 
RNA II gene is foundational and central biobrick of SynORI system.  
 +
 +
===Specific RNA II versions in multi-plasmid systems===
 +
 +
===Origin of RNA II biobrick===
 +
In order to flexibly control the synthesis of RNA I (Why RNA I ? <link to RNA I biobrick>), the RNA I gene first needed to be inactivated in ColE1 origin of replication. That, however, was not a trivial task, as ColE1 ORI is an antisense system, which means that by changing RNA I promoter sequence, one also changes the RNA II secondary structure, which is crucial for plasmid replication initiation (Find out more about how team Vilnius-Lithuania solved this problem by pressing this link! <LINK REQUIRED>). This is the main reason why, in SynORI framework, the wildtype ColE1 ORI is split into two different parts - <b> RNR I and RNA II </b>.
 +
 +
<Picture of how RNA I promoter mutations might destroy RNA II secondary structure.>
 +
  
 
=Characterization of RNA II (Vilnius-Lithuania 2017)=
 
=Characterization of RNA II (Vilnius-Lithuania 2017)=

Revision as of 20:50, 23 October 2017


SynORI framework RNA II - Replication Initiator (Group A)

RNAII acts as a pre-primer and begins the synthesis of plasmid DNA leader strand. The transcript folds into a secondary structure which stabilises the interaction between the nascent RNA and the origin's DNA. This hybrid is attacked by RNase H, which cleaves the RNA strand, exposing a 3' hydroxyl group. This allows the extension of the leading strand by DNA Polymerase I. Lagging strand synthesis is later initiated by a primase encoded by the host cell.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]



Introduction

Biology

ColE1 plasmid replication overview

Figure 1. Main principles of ColE1 plasmid family replication. (Citation needed)

ColE1-type plasmid replication begins with synthesis of plasmid encoded RNA II (also called primer transcript) by RNA polymerase which initiates transcription at a site 555bp upstream of origin of replication. The RNA transcript forms a RNA - DNA hybrid with template DNA near the origin of replication. Hybridized RNA is then cleaved at the replication origin by RNAse H and serves as a primer for DNA synthesis by DNA polymerase I (Figure 1. A).

Initiation of replication can be inhibited by plasmid encoded small RNA, called RNA I . Synthesis of RNA I starts 445 bp upstream of the replication origin and proceeds in the direction opposite to that of RNA II synthesis, and terminates near the RNA II transcription initiation site. RNA I binds to RNA II and thereby prevents formation of a secondary structure of RNA II that is necessary for hybridization of RNA II to the template DNA (Figure 1. B).

For RNA I to inhibit primer formation, it must bind before the nascent RNA II transcript extends to the replication origin. Consequently, the concentration of RNA I and the rate of binding of RNA I to RNA II is critical for regulation of primer formation and thus for plasmid replication.

Interaction between RNA I and RNA II can be amplified by Rop protein, see part:BBa_K2259010.

Rop dimer is a bundle of four tightly packed alpha helices that are held by hydrophobic interactions (Fig. 2).

Usage with SynORI (Framework for multi-plasmid systems)

About SynORI

Figure 1. Guide to SynORI - framework for multiplasmid systems. CLICK HERE TO SEE THE WHOLE COLLECTION (link needed) (Citation needed)

SynORI is a framework for multi-plasmid systems created by Vilnius-Lithuania 2017 which enables quick and easy workflow with multiple plasmids, while also allowing to freely pick and modulate copy number for every unique plasmid group! Read more about [http://2017.igem.org/Team:Vilnius-Lithuania SynORI here]!


Regulative RNA II molecule in SynORI

RNA II gene is foundational and central biobrick of SynORI system.

Specific RNA II versions in multi-plasmid systems

Origin of RNA II biobrick

In order to flexibly control the synthesis of RNA I (Why RNA I ? <link to RNA I biobrick>), the RNA I gene first needed to be inactivated in ColE1 origin of replication. That, however, was not a trivial task, as ColE1 ORI is an antisense system, which means that by changing RNA I promoter sequence, one also changes the RNA II secondary structure, which is crucial for plasmid replication initiation (Find out more about how team Vilnius-Lithuania solved this problem by pressing this link! <LINK REQUIRED>). This is the main reason why, in SynORI framework, the wildtype ColE1 ORI is split into two different parts - RNR I and RNA II .

<Picture of how RNA I promoter mutations might destroy RNA II secondary structure.>


Characterization of RNA II (Vilnius-Lithuania 2017)

Constitutive Rop protein effect on plasmid copy number

To be updated!

References