Difference between revisions of "Part:BBa K2259000"
Line 40: | Line 40: | ||
[[Image:Cole1 horizontal cropped.png|center|500px|thumb|<b>Figure 1. </b> Guide to SynORI - framework for multiplasmid systems. CLICK HERE TO SEE THE WHOLE COLLECTION (link needed) (Citation needed)]] | [[Image:Cole1 horizontal cropped.png|center|500px|thumb|<b>Figure 1. </b> Guide to SynORI - framework for multiplasmid systems. CLICK HERE TO SEE THE WHOLE COLLECTION (link needed) (Citation needed)]] | ||
SynORI is a framework for multi-plasmid systems created by ''Vilnius-Lithuania 2017'' which enables quick and easy workflow with multiple plasmids, while also allowing to freely pick and modulate copy number for every unique plasmid group! Read more about [http://2017.igem.org/Team:Vilnius-Lithuania SynORI here]! | SynORI is a framework for multi-plasmid systems created by ''Vilnius-Lithuania 2017'' which enables quick and easy workflow with multiple plasmids, while also allowing to freely pick and modulate copy number for every unique plasmid group! Read more about [http://2017.igem.org/Team:Vilnius-Lithuania SynORI here]! | ||
+ | |||
===Regulative RNA II molecule in SynORI=== | ===Regulative RNA II molecule in SynORI=== | ||
RNA II gene is foundational and central biobrick of SynORI system. | RNA II gene is foundational and central biobrick of SynORI system. | ||
+ | |||
+ | ===Specific RNA II versions in multi-plasmid systems=== | ||
+ | |||
+ | ===Origin of RNA II biobrick=== | ||
+ | In order to flexibly control the synthesis of RNA I (Why RNA I ? <link to RNA I biobrick>), the RNA I gene first needed to be inactivated in ColE1 origin of replication. That, however, was not a trivial task, as ColE1 ORI is an antisense system, which means that by changing RNA I promoter sequence, one also changes the RNA II secondary structure, which is crucial for plasmid replication initiation (Find out more about how team Vilnius-Lithuania solved this problem by pressing this link! <LINK REQUIRED>). This is the main reason why, in SynORI framework, the wildtype ColE1 ORI is split into two different parts - <b> RNR I and RNA II </b>. | ||
+ | |||
+ | <Picture of how RNA I promoter mutations might destroy RNA II secondary structure.> | ||
+ | |||
=Characterization of RNA II (Vilnius-Lithuania 2017)= | =Characterization of RNA II (Vilnius-Lithuania 2017)= |
Revision as of 20:50, 23 October 2017
SynORI framework RNA II - Replication Initiator (Group A)
RNAII acts as a pre-primer and begins the synthesis of plasmid DNA leader strand. The transcript folds into a secondary structure which stabilises the interaction between the nascent RNA and the origin's DNA. This hybrid is attacked by RNase H, which cleaves the RNA strand, exposing a 3' hydroxyl group. This allows the extension of the leading strand by DNA Polymerase I. Lagging strand synthesis is later initiated by a primase encoded by the host cell.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Introduction
Biology
ColE1 plasmid replication overview
ColE1-type plasmid replication begins with synthesis of plasmid encoded RNA II (also called primer transcript) by RNA polymerase which initiates transcription at a site 555bp upstream of origin of replication. The RNA transcript forms a RNA - DNA hybrid with template DNA near the origin of replication. Hybridized RNA is then cleaved at the replication origin by RNAse H and serves as a primer for DNA synthesis by DNA polymerase I (Figure 1. A).
Initiation of replication can be inhibited by plasmid encoded small RNA, called RNA I . Synthesis of RNA I starts 445 bp upstream of the replication origin and proceeds in the direction opposite to that of RNA II synthesis, and terminates near the RNA II transcription initiation site. RNA I binds to RNA II and thereby prevents formation of a secondary structure of RNA II that is necessary for hybridization of RNA II to the template DNA (Figure 1. B).
For RNA I to inhibit primer formation, it must bind before the nascent RNA II transcript extends to the replication origin. Consequently, the concentration of RNA I and the rate of binding of RNA I to RNA II is critical for regulation of primer formation and thus for plasmid replication.
Interaction between RNA I and RNA II can be amplified by Rop protein, see part:BBa_K2259010.
Rop dimer is a bundle of four tightly packed alpha helices that are held by hydrophobic interactions (Fig. 2).
Usage with SynORI (Framework for multi-plasmid systems)
About SynORI
SynORI is a framework for multi-plasmid systems created by Vilnius-Lithuania 2017 which enables quick and easy workflow with multiple plasmids, while also allowing to freely pick and modulate copy number for every unique plasmid group! Read more about [http://2017.igem.org/Team:Vilnius-Lithuania SynORI here]!
Regulative RNA II molecule in SynORI
RNA II gene is foundational and central biobrick of SynORI system.
Specific RNA II versions in multi-plasmid systems
Origin of RNA II biobrick
In order to flexibly control the synthesis of RNA I (Why RNA I ? <link to RNA I biobrick>), the RNA I gene first needed to be inactivated in ColE1 origin of replication. That, however, was not a trivial task, as ColE1 ORI is an antisense system, which means that by changing RNA I promoter sequence, one also changes the RNA II secondary structure, which is crucial for plasmid replication initiation (Find out more about how team Vilnius-Lithuania solved this problem by pressing this link! <LINK REQUIRED>). This is the main reason why, in SynORI framework, the wildtype ColE1 ORI is split into two different parts - RNR I and RNA II .
<Picture of how RNA I promoter mutations might destroy RNA II secondary structure.>
Characterization of RNA II (Vilnius-Lithuania 2017)
Constitutive Rop protein effect on plasmid copy number
To be updated!