Difference between revisions of "Part:BBa K2230028"

Line 3: Line 3:
 
<partinfo>BBa_K2230028 short</partinfo>
 
<partinfo>BBa_K2230028 short</partinfo>
  
Salmonella typhimurium LT2 has two glucose-specific transporter systems, PTS system and sodium/glucose cotransporter. PTS system contains two subunits IIA encoded by crr and IIBC by ptsG which are assembled to a high-affinity active transporter. The other is a Na+/glucose cotransporter encoded by STM1128 that contributes to facilitated transport with lower glucose affinity. Based on our research, the glucose transporter of Salmonella has a lower Km compared to human small intestine, Staphylococcus and E. coli, indicating a higher efficiency for glucose uptake. In our project, we created the glucose transporter device and genetically engineer microbes with these two systems.
+
''Salmonella typhimurium'' LT2 has two glucose-specific transporter systems, PTS system and sodium/glucose cotransporter. PTS system contains two subunits IIA encoded by crr and IIBC by ptsG which are assembled to a high-affinity active transporter. The other is a Na+/glucose cotransporter encoded by STM1128 that contributes to facilitated transport with lower glucose affinity.  
  
[[File:Mingdaophil1021-parttable1-revised.png|500px|center]]                 
 
  
In order to express the genes in E. coli for demonstration and in probiotics for proof-of-concept in a real world. We chose promoter CP29 that is a strong constitutive promoter working well in both E. coli and Lactobacillus spp1. The biobrick part, CP29-RBS-aeBlue (BBa_K1033280) was used and to be assembled with the transporter genes.
+
=== Research ===
 +
Based on our research, the glucose transporter of ''Salmonella'' has a lower Km compared to human small intestine, ''Staphylococcus'' and ''E. coli'', indicating a higher efficiency for glucose uptake. In our study, we demonstrated glucose absorption ability by overexpressing two systems in ''E. coli''. Please go to our wiki page ([http://2017.igem.org/Team:Mingdao/Demonstrate Mingdao iGEM 2017]) for more information.  
  
 +
[[File:Mingdaophil1026-2.png|550px|center]]
  
Cloning: Promoter CP29-RBS-aeBlue (BBa_K1033280) was assembled with RBS-STM1128-TT/pSB1C3 (BBa_K2230025)
 
  
  
Function: An active low-affinity glucose transporter system. Promoter CP29 is a continuous and strong promoter which works well in both E. coli and Lactobacillus spp. The blue protein encoded by aeBlue gene acts as indicator for the gene expression in the transgenic strain. This device can help E. coli and Lactobacillus spp. efficiently take up and retrieve glucose in the environment.
+
=== Cloning ===
 +
Promoter CP29-RBS-aeBlue (BBa_K1033280) was assembled with RBS-STM1128-TT/pSB1C3 (BBa_K2230025)
 +
 
 +
 +
=== Function ===
 +
A facilitated low-affinity glucose transporter system. Promoter CP29 is a constitutive and strong promoter which works well in both E. coli and Lactobacillus spp. The blue protein encoded by aeBlue gene acts as indicator for the gene expression in the transgenic strain. This device can help E. coli and Lactobacillus spp. efficiently take up and retrieve glucose in the environment.
 +
 
 +
 
 +
 
 +
=== Demonstration for Glucose Absorption ===
 +
 
 +
In order to express the genes, we chose promoter CP29 that is a strong constitutive promoter working well in both E. coli and Lactobacillus spp. The biobrick part, CP29-RBS-aeBlue ([https://parts.igem.org/Part:BBa_K1033280 BBa_K1033280]), was used and assembled with the transporter genes.
 +
[[File:Mingdaophil1026-4.jpeg|450px|center]]
 +
 
 +
 
 +
To measure glucose uptake by the engineered ''E. coli'' expressing PTS system or Na+/glucose cotransporter, the bacteria were culture in LB broth supplemented with 34ug/ml of chloramphenicol at 37°C overnight. The next day, the bacterial culture was adjusted to OD600 = 3 and exchanged with M9 minimal media with 20mM of glucose for 4 hours or at different time points.
 +
[[File:Mingdaophil1026-5.png|500px|center]]
 +
 
 +
 
 +
Glucose concentration was analyzed with Glucose (HK) Assay Kit (Sigma-Aldrich) according to the manufacturer’s instruction. Briefly, glucose was phosphorylated (G6P) by hexokinase. Then G6P was further catalyzed by G6PDH and the reduced NAHD was formed from the oxidation of NAD, resulting in increasing in absorbance at 340 nm.
 +
[[File:Mingdaophil1026-6.png|600px|center]]
 +
 
 +
 
 +
Fig. 3 represented that the cell growth of E. coli expressing the Na+/Glucose transporter was comparable and even slightly higher than the control group. The glucose began to be absorbed at the 3rd hour. The glucose uptake efficiency was greater in Na+/Glu group than in control group with 1.2 times difference.
 +
[[File:Mingdaophil1026-7.png|700px|center]]
 +
     
 +
In our results, glucose absorption by Na+/glucose transporter expressing bacteria was achieved to 97% after 4 hours with 1.2 times enhanced efficiency compared to the normal E. coli. To further increase the rate of glucose uptake, one may think about the glucose metabolism or conversion to other materials when entering into the cell.
 +
 
 +
 
 +
 
 +
=== Reference ===
 +
1. Glucose Galactose Malabsorption. American Journal of Physiology - Gastrointestinal and Liver Physiology 1998;275:G879-G882
 +
 
 +
2. Functional Properties and Genomics of Glucose Transporters. Curr Genomics. 2007;8(2): 113–128.
 +
 
 +
3. The SLC2 (GLUT) Family of Membrane Transporters. Mol Aspects Med. 2013;34(0): 121–138.
 +
 
 +
4. Glucose and Glycolysis Are Required for the Successful Infection of Macrophages and Mice by Salmonella enterica Serovar Typhimurium. Infect Immun. 2009;77(7): 3117–3126.
  
  

Revision as of 05:44, 26 October 2017


CP29-RBS-aeBlue-RBS-STM1128-TT/pSB1C3

Salmonella typhimurium LT2 has two glucose-specific transporter systems, PTS system and sodium/glucose cotransporter. PTS system contains two subunits IIA encoded by crr and IIBC by ptsG which are assembled to a high-affinity active transporter. The other is a Na+/glucose cotransporter encoded by STM1128 that contributes to facilitated transport with lower glucose affinity.


Research

Based on our research, the glucose transporter of Salmonella has a lower Km compared to human small intestine, Staphylococcus and E. coli, indicating a higher efficiency for glucose uptake. In our study, we demonstrated glucose absorption ability by overexpressing two systems in E. coli. Please go to our wiki page ([http://2017.igem.org/Team:Mingdao/Demonstrate Mingdao iGEM 2017]) for more information.

Mingdaophil1026-2.png


Cloning

Promoter CP29-RBS-aeBlue (BBa_K1033280) was assembled with RBS-STM1128-TT/pSB1C3 (BBa_K2230025)


Function

A facilitated low-affinity glucose transporter system. Promoter CP29 is a constitutive and strong promoter which works well in both E. coli and Lactobacillus spp. The blue protein encoded by aeBlue gene acts as indicator for the gene expression in the transgenic strain. This device can help E. coli and Lactobacillus spp. efficiently take up and retrieve glucose in the environment.


Demonstration for Glucose Absorption

In order to express the genes, we chose promoter CP29 that is a strong constitutive promoter working well in both E. coli and Lactobacillus spp. The biobrick part, CP29-RBS-aeBlue (BBa_K1033280), was used and assembled with the transporter genes.

Mingdaophil1026-4.jpeg


To measure glucose uptake by the engineered E. coli expressing PTS system or Na+/glucose cotransporter, the bacteria were culture in LB broth supplemented with 34ug/ml of chloramphenicol at 37°C overnight. The next day, the bacterial culture was adjusted to OD600 = 3 and exchanged with M9 minimal media with 20mM of glucose for 4 hours or at different time points.

Mingdaophil1026-5.png


Glucose concentration was analyzed with Glucose (HK) Assay Kit (Sigma-Aldrich) according to the manufacturer’s instruction. Briefly, glucose was phosphorylated (G6P) by hexokinase. Then G6P was further catalyzed by G6PDH and the reduced NAHD was formed from the oxidation of NAD, resulting in increasing in absorbance at 340 nm.

Mingdaophil1026-6.png


Fig. 3 represented that the cell growth of E. coli expressing the Na+/Glucose transporter was comparable and even slightly higher than the control group. The glucose began to be absorbed at the 3rd hour. The glucose uptake efficiency was greater in Na+/Glu group than in control group with 1.2 times difference.

Mingdaophil1026-7.png

In our results, glucose absorption by Na+/glucose transporter expressing bacteria was achieved to 97% after 4 hours with 1.2 times enhanced efficiency compared to the normal E. coli. To further increase the rate of glucose uptake, one may think about the glucose metabolism or conversion to other materials when entering into the cell.


Reference

1. Glucose Galactose Malabsorption. American Journal of Physiology - Gastrointestinal and Liver Physiology 1998;275:G879-G882

2. Functional Properties and Genomics of Glucose Transporters. Curr Genomics. 2007;8(2): 113–128.

3. The SLC2 (GLUT) Family of Membrane Transporters. Mol Aspects Med. 2013;34(0): 121–138.

4. Glucose and Glycolysis Are Required for the Successful Infection of Macrophages and Mice by Salmonella enterica Serovar Typhimurium. Infect Immun. 2009;77(7): 3117–3126.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 2065
  • 1000
    COMPATIBLE WITH RFC[1000]