Difference between revisions of "Part:BBa K2507006"

Line 1: Line 1:
 +
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K2507006 short</partinfo>
 
<partinfo>BBa_K2507006 short</partinfo>
  
This part consists of the fragment from iGEM 2017 kit4 2I and the plasmid backbone pSB1C3. In combination with the <i>E. coli</i> this part can produce cjBlue  green chromoprotein.
+
==Usage and Biology==
 
+
E.coli codon optimized TtrS(BBa_K2507002) and TtrR(BBa_K2507003) are two basic parts which belong to the two-component system from marine Shewanella baltica. TtrS is the membrane-bound sensor kinase(SK) which can sense tetrathionate outside the cell and TtrR is the DNA-binding response regulator(RR).PttrB185-269 (BBa_K2507019) is a minimal TtrR activated promoter when TtrR is phosphorylated by TtrS after TtrS sensing tetrathionate.
 +
Winter et.al have shown that reactive oxygen species (ROS) produced by the host during inflammation convert thiosulfate to tetrathionate, which this pathogen consumes to establish a startpoint for infection (Winter et al, 2010).Thus, tetrathionate may correlate with pro-inflammation conditions and can be used as gut inflammation sensor.
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
===Usage and Biology===
  
<<!--
+
 
 
<!-- -->
 
<!-- -->
 +
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K2507006 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K2507006 SequenceAndFeatures</partinfo>
-->>
 
 
 
<html>
 
<h2>Performance</h2>
 
<p>We use this part to test and find if specific chromoprotein can fit our requirement to replace the sfGFP as a expressor.</p>
 
 
<<!--
 
<figure>
 
<img src="https://static.igem.org/mediawiki/2015/8/84/Bielefeld-CeBiTec_arsenic_invitro_uncorrected.png" width="600px">
 
<figcaption>Induction of arsenic sensor <i>in vitro</i>. For this experiment, a cell extract that already contained the arsenic repressor was used. Error bars represent the standard deviation of three biological replicates.</figcaption>
 
</figure>
 
-->>
 
 
 
  
 +
==Characterization==
 +
After validate this system in laboratory Escherichia coli Top10 and E.coli Nissle 1917, this system can function as a tetrathionate sensor and reporter.
 +
Figure 1. Schematic of ligand-induced signaling through TtrS/R and plasmid design of the sensor components. TtrS/R were tested under the situation BBa_K2507006 was in pSB4K5 backbone and BBa_K2507013 was in pSB1C3 backbone. We submitted the parts all to the iGEM registry in pSB1C3.
 +
图2
  
<h2>References</h2>
+
==Reference==
</html>
+
<p>
 +
Daeffler, K. N., Galley, J. D., Sheth, R. U., Ortiz‐Velez, L. C., Bibb, C. O., & Shroyer, N. F., et al. (2017). Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 13(4), 923.
 +
</p>
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Revision as of 16:50, 30 October 2017


J23109-ttrS

Usage and Biology

E.coli codon optimized TtrS(BBa_K2507002) and TtrR(BBa_K2507003) are two basic parts which belong to the two-component system from marine Shewanella baltica. TtrS is the membrane-bound sensor kinase(SK) which can sense tetrathionate outside the cell and TtrR is the DNA-binding response regulator(RR).PttrB185-269 (BBa_K2507019) is a minimal TtrR activated promoter when TtrR is phosphorylated by TtrS after TtrS sensing tetrathionate. Winter et.al have shown that reactive oxygen species (ROS) produced by the host during inflammation convert thiosulfate to tetrathionate, which this pathogen consumes to establish a startpoint for infection (Winter et al, 2010).Thus, tetrathionate may correlate with pro-inflammation conditions and can be used as gut inflammation sensor.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 11
    Illegal NheI site found at 34
    Illegal NheI site found at 1383
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 857
  • 1000
    COMPATIBLE WITH RFC[1000]

Characterization

After validate this system in laboratory Escherichia coli Top10 and E.coli Nissle 1917, this system can function as a tetrathionate sensor and reporter. Figure 1. Schematic of ligand-induced signaling through TtrS/R and plasmid design of the sensor components. TtrS/R were tested under the situation BBa_K2507006 was in pSB4K5 backbone and BBa_K2507013 was in pSB1C3 backbone. We submitted the parts all to the iGEM registry in pSB1C3. 图2

Reference

Daeffler, K. N., Galley, J. D., Sheth, R. U., Ortiz‐Velez, L. C., Bibb, C. O., & Shroyer, N. F., et al. (2017). Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Molecular Systems Biology, 13(4), 923.