Difference between revisions of "Part:BBa K2150101"

Line 15: Line 15:
 
In vivo qualitative experiements
 
In vivo qualitative experiements
  
 
+
===References===
<!-- Add more about the biology of this part here
+
<h3>References</3>
===Usage and Biology===
+
[1] Ian F. Moore, Donald W. Hughes, and Gerard D. Wright. Tigecycline Is Modified by the Flavin-Dependent Monooxygenase TetX. Biochemistry.44, 11829-11835 (2005)
Among three dominant tetracycline resistance mechanisms, enzymatic inactivation of tetracycline is a novel type of resistance rather than extensively studied mechanism, efflux and ribosomal protein, which shows great potential in antibiotics degradation. TetX gene is the only thoroughly studied resistance gene initially found in Bacteroides fragilis, coding for a flavin-dependent monooxygenase Tet X that modifies tetracyclines and requires NADPH, Mg2+, and O2 for activity.[1]
+
[2] Gesa Volkers, Gottfried J. Palm, Manfred S. Weiss, Gerard D. Wright, Winfried Hinrichs. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Letters. 585, 1061-1066(2011)
 
+
[3] Brenda S. Speer and Abigail A Salyers. Novel Aerobic Tetracycline Resistance Gene That Chemically Modifies Tetracycline. Journal of Bacteriology. 171.148-153 ( 1989 )
<!-- -->
+
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K2150101 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K2150101 SequenceAndFeatures</partinfo>

Revision as of 17:58, 16 October 2016

Contents

Tetracycline resistance protein from Bacteroides fragilis

Usage and Biology

Among three dominant tetracycline resistance mechanisms, enzymatic inactivation of tetracycline is a novel type of resistance rather than extensively studied mechanism, efflux and ribosomal protein, which shows great potential in antibiotics degradation. TetX gene is the only thoroughly studied resistance gene initially found in Bacteroides fragilis, coding for a flavin-dependent monooxygenase Tet X that modifies tetracyclines and requires NADPH, Mg2+, and O2 for activity.[1]

Degradation Mechanism

TetX monooxygenase catalyzes regioselective hydroxylation at carbon 11a of tetracyclines. In solutions of pH greater than 1, the product 11a-hydroxytetracycline can decomposes rapidly and non-enzymatically into products that are not easily identifiable. [1]

The monooxygenase reaction mechanism relies on the redox properties of FAD. After reduction to FADH2 by NADPH, the isoalloxazine binds molecular oxygen to form a hydroperoxide. FAD hydroperoxide is formed after substrate recognition, which subsequently direct substrate hydroxylation takes place.[2]


Characterization: In vivo qualitative experiements

References

References</3> [1] Ian F. Moore, Donald W. Hughes, and Gerard D. Wright. Tigecycline Is Modified by the Flavin-Dependent Monooxygenase TetX. Biochemistry.44, 11829-11835 (2005) [2] Gesa Volkers, Gottfried J. Palm, Manfred S. Weiss, Gerard D. Wright, Winfried Hinrichs. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Letters. 585, 1061-1066(2011) [3] Brenda S. Speer and Abigail A Salyers. Novel Aerobic Tetracycline Resistance Gene That Chemically Modifies Tetracycline. Journal of Bacteriology. 171.148-153 ( 1989 ) Sequence and Features

Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 562
  • 1000
    COMPATIBLE WITH RFC[1000]