Difference between revisions of "Part:BBa K1725040"

 
Line 12: Line 12:
  
  
https://static.igem.org/mediawiki/2015/9/95/Glasgow_2015_Repression_Fold_Graph.png  
+
https://static.igem.org/mediawiki/parts/7/78/Glasgow_2015_Fold_Repression_Graph.png
  
 
<b>Figure 1 Fold Repression. BioBricks: K1725082 (pL-tet driving GFP expression), K1725031 (pL-lac driving TetR expression), K1725001 (PphlF driving GFP expression), and K1725042 (pL-lac driving PhlF expression). Repressor protein expression induced with 100μM IPTG. Mean and standard deviation of replicates were calculated to give value and error bars, and normalised against a negative control.</b>
 
<b>Figure 1 Fold Repression. BioBricks: K1725082 (pL-tet driving GFP expression), K1725031 (pL-lac driving TetR expression), K1725001 (PphlF driving GFP expression), and K1725042 (pL-lac driving PhlF expression). Repressor protein expression induced with 100μM IPTG. Mean and standard deviation of replicates were calculated to give value and error bars, and normalised against a negative control.</b>
  
https://static.igem.org/mediawiki/2015/7/7e/Glasgow_2015_PhlF_TetR_varied_IPTG_scan.png  
+
https://static.igem.org/mediawiki/parts/6/6e/Glasgow_2015_Varied_IPTG_Graph.png
  
<b>Figure 3 Varied Repression Levels. BioBricks: K1725082 (pL-tet driving GFP expression), K1725031 (pL-lac driving TetR expression), K1725001 (PphlF driving GFP expression), and K1725042 (pL-lac driving PhlF expression). Repressor protein expression induced with 100μM, 30 μM, 10 μM, 3 μM, and 0 μM IPTG. Mean and standard deviation of replicates were calculated to give value and error bars, and normalised against a negative control.</b>
+
<b>Figure 2 Varied Repression Levels. BioBricks: K1725082 (pL-tet driving GFP expression), K1725031 (pL-lac driving TetR expression), K1725001 (PphlF driving GFP expression), and K1725042 (pL-lac driving PhlF expression). Repressor protein expression induced with 100μM, 30 μM, 10 μM, 3 μM, and 0 μM IPTG. Mean and standard deviation of replicates were calculated to give value and error bars, and normalised against a negative control.</b>
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Latest revision as of 19:22, 20 September 2015

phlF encoding PhlF repressor from Pseudomonas protegens Pf-5

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

PhlF gave 83-fold repression of GFP expression from PphlF (BBa_K1725000), whereas the control, TetR (BBa_C0040), gave only 33-fold repression of pL-tet (BBa_R0040). (figure 1) A lower expression level of PhlF completely represses GFP expression from PphlF, compared to the higher expression level of TetR required for pL-tet. (figure 2)


Glasgow_2015_Fold_Repression_Graph.png

Figure 1 Fold Repression. BioBricks: K1725082 (pL-tet driving GFP expression), K1725031 (pL-lac driving TetR expression), K1725001 (PphlF driving GFP expression), and K1725042 (pL-lac driving PhlF expression). Repressor protein expression induced with 100μM IPTG. Mean and standard deviation of replicates were calculated to give value and error bars, and normalised against a negative control.

Glasgow_2015_Varied_IPTG_Graph.png

Figure 2 Varied Repression Levels. BioBricks: K1725082 (pL-tet driving GFP expression), K1725031 (pL-lac driving TetR expression), K1725001 (PphlF driving GFP expression), and K1725042 (pL-lac driving PhlF expression). Repressor protein expression induced with 100μM, 30 μM, 10 μM, 3 μM, and 0 μM IPTG. Mean and standard deviation of replicates were calculated to give value and error bars, and normalised against a negative control.