Difference between revisions of "Part:BBa K1632010"
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1632010 short</partinfo> | <partinfo>BBa_K1632010 short</partinfo> | ||
− | + | [[Image:Tokyo_Tech_FimB allows Decision making coli to select option at random, inverting a promoter in a fim switch.png|thumb|center|800px|<b>Fig. 1. </b>FimB allows Decision making coli to select option at random, inverting a promoter in a fim switch.]] | |
− | [[Image:Tokyo_Tech_FimB_random.png |thumb|center|900px|<b>Fig. | + | [[Image:Tokyo_Tech_FimB_random.png |thumb|center|900px|<b>Fig. 2. </b>New plasmids we constructed to confirm the function of <partinfo>BBa_K1632012</partinfo> plasmid for Decision making coli.]]<br> |
[[Image:Tokyo_Tech_fimB_summary1.png |thumb|center|900px|<b>Fig. 1. </b>New plasmids we constructed to confirm the function of <partinfo>BBa_K1632012</partinfo> plasmid for Decision making coli.]]<br> | [[Image:Tokyo_Tech_fimB_summary1.png |thumb|center|900px|<b>Fig. 1. </b>New plasmids we constructed to confirm the function of <partinfo>BBa_K1632012</partinfo> plasmid for Decision making coli.]]<br> | ||
Line 9: | Line 9: | ||
<span style="margin-left: 10px;">In order to assay the function of our FimB, we added a GFP coding sequence on the downstream of the <i>fim</i> switch(wild-type).The <i>fim</i> switch[default ON](wild-type)_<i>gfp</i> (<partinfo>BBa_K1632007</partinfo>) emitts fluorescence when expressed, while the <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i>(<partinfo>BBa_K1632008</partinfo>) does not emit florescence when expressed. We also added PBAD/''araC'' on the upstream of ''fimB''(wild-type).PBAD/''araC''_<i>fimB</i>(wild-type) (<partinfo>BBa_K1632012</partinfo>) can induce the expression of FimB(wild-type) in the presence of arabinose. We co-transformed a <i>fim</i> switch(wild-type)_<i>gfp</i> and a PBAD/''araC''_fim recombinase in the E. coli DH5alpha strain. We measured the fluorescence intensity of the cells induced by different concentraions of arabinose. | <span style="margin-left: 10px;">In order to assay the function of our FimB, we added a GFP coding sequence on the downstream of the <i>fim</i> switch(wild-type).The <i>fim</i> switch[default ON](wild-type)_<i>gfp</i> (<partinfo>BBa_K1632007</partinfo>) emitts fluorescence when expressed, while the <i>fim</i> switch[default OFF](wild-type)_<i>gfp</i>(<partinfo>BBa_K1632008</partinfo>) does not emit florescence when expressed. We also added PBAD/''araC'' on the upstream of ''fimB''(wild-type).PBAD/''araC''_<i>fimB</i>(wild-type) (<partinfo>BBa_K1632012</partinfo>) can induce the expression of FimB(wild-type) in the presence of arabinose. We co-transformed a <i>fim</i> switch(wild-type)_<i>gfp</i> and a PBAD/''araC''_fim recombinase in the E. coli DH5alpha strain. We measured the fluorescence intensity of the cells induced by different concentraions of arabinose. | ||
− | [[Image:Tokyo_Tech_FimB_assay_Results.png |thumb|center|700px|<b>Fig. | + | [[Image:Tokyo_Tech_FimB_assay_Results.png |thumb|center|700px|<b>Fig. 3. </b>The histograms of the samples measured by flow cytometer]]<br> |
<span style="margin-left: 10px;">From the experimental results, our FimB(wild-type) inverted the <i>fim</i> switch[default ON](wild-type) from [ON] state to [OFF] state and the <i>fim</i> switch[defult OFF](wild-type) from [OFF] state to [ON] state, dependent on the concentration of arabinose.<br><br> | <span style="margin-left: 10px;">From the experimental results, our FimB(wild-type) inverted the <i>fim</i> switch[default ON](wild-type) from [ON] state to [OFF] state and the <i>fim</i> switch[defult OFF](wild-type) from [OFF] state to [ON] state, dependent on the concentration of arabinose.<br><br> | ||
− | [[Image:Tokyo_Tech_FimB_assay_Results_part1.png |thumb|center|400px|<b>Fig. | + | [[Image:Tokyo_Tech_FimB_assay_Results_part1.png |thumb|center|400px|<b>Fig. 4. </b>The histogram of reporter cell (2)]]<br> |
<span style="margin-left: 10px;">When the concentration of FimB(wild-type) increased by increasing the concentration of arabinose, we confirmed that the fluorescence intensity decreased in both [ON] to [OFF] process and [OFF] to [ON] process. <br> | <span style="margin-left: 10px;">When the concentration of FimB(wild-type) increased by increasing the concentration of arabinose, we confirmed that the fluorescence intensity decreased in both [ON] to [OFF] process and [OFF] to [ON] process. <br> | ||
Line 19: | Line 19: | ||
<span style="margin-left: 10px;">The result of the reporter cell (2) shows that when the concentration of arabinose is increased to 0〜20 microM, the fluorescence intensity increases. This shows the function of FimB(wild-type) inverting the <i>fim</i> switch(wild-type) from [OFF] state to [ON] state. However, when the arabinose concentration is excess (5mM), the fluorescence intensity decreases (Fig. 3). According to [1], this is caused by the excess increase in the inversion rate of the ''fim'' switch(wild-type). When the inversion rate is too high, there is not enough time for transcription initiation. Consequently, the GFP expression decreases.<br><br><br> | <span style="margin-left: 10px;">The result of the reporter cell (2) shows that when the concentration of arabinose is increased to 0〜20 microM, the fluorescence intensity increases. This shows the function of FimB(wild-type) inverting the <i>fim</i> switch(wild-type) from [OFF] state to [ON] state. However, when the arabinose concentration is excess (5mM), the fluorescence intensity decreases (Fig. 3). According to [1], this is caused by the excess increase in the inversion rate of the ''fim'' switch(wild-type). When the inversion rate is too high, there is not enough time for transcription initiation. Consequently, the GFP expression decreases.<br><br><br> | ||
− | [[Image:Tokyo_Tech_FLA_colony_FimB.png |thumb|center|600px|<b>Fig. | + | [[Image:Tokyo_Tech_FLA_colony_FimB.png |thumb|center|600px|<b>Fig. 5. </b> Determination of percemtage of [ON] state and colony formation using plasmid mixture extracted cell expressing FimB.]]<br> |
To confirm our results that our FimB(wild-type) inverted the <i>fim</i> switch(wild-type) further, after scattering the samples on a plate, we counted the number of colonies which were expressing GFP and the colonies which were not expressing GFP(Fig.4). The state of <i>fim</i> switch either [ON] or [OFF] in colonies is evaluated from fluorescence. In brief, colonies which contain <i>fim</i> switch[default ON] expresse GFP while colonies which contain <i>fim</i> switch[default OFF] do not express GFP. We counted out the all colonies and colonies which contain <i>fim</i> switch[default ON]. In the results of the reporter cell (1), when the expression of FimB(wild-type) was induced by arabinose, the percentage of [ON] state decreased. Furthermore, from the results of the reporter cell (2), when the expression of FimB(wild-type) was induced, the percentage of [ON] state increased. From the results of the two reporter cells (1) and (2), we successfully confirmed that the fimB protein inverts the <i>fim</i> switch(wild-type) from [ON] state to [OFF] state and from [OFF] state to [ON] state. (Fig.3). This result was consistent with the histograms (Fig. 2)<br> | To confirm our results that our FimB(wild-type) inverted the <i>fim</i> switch(wild-type) further, after scattering the samples on a plate, we counted the number of colonies which were expressing GFP and the colonies which were not expressing GFP(Fig.4). The state of <i>fim</i> switch either [ON] or [OFF] in colonies is evaluated from fluorescence. In brief, colonies which contain <i>fim</i> switch[default ON] expresse GFP while colonies which contain <i>fim</i> switch[default OFF] do not express GFP. We counted out the all colonies and colonies which contain <i>fim</i> switch[default ON]. In the results of the reporter cell (1), when the expression of FimB(wild-type) was induced by arabinose, the percentage of [ON] state decreased. Furthermore, from the results of the reporter cell (2), when the expression of FimB(wild-type) was induced, the percentage of [ON] state increased. From the results of the two reporter cells (1) and (2), we successfully confirmed that the fimB protein inverts the <i>fim</i> switch(wild-type) from [ON] state to [OFF] state and from [OFF] state to [ON] state. (Fig.3). This result was consistent with the histograms (Fig. 2)<br> | ||
− | [[Image:Tokyo_Tech_FImB_sequence.png |thumb|center|600px|<b>Fig. | + | [[Image:Tokyo_Tech_FImB_sequence.png |thumb|center|600px|<b>Fig. 6. </b> DNA sequencing results of <i>fim</i> switch(wild-type)]]<br> |
Also, we incubated the colonies with fluorescence and the colonies without fluorescence. We minipreped cell cultures. Sequence complementarity of the each sample in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all samples (Fig. 5.). | Also, we incubated the colonies with fluorescence and the colonies without fluorescence. We minipreped cell cultures. Sequence complementarity of the each sample in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all samples (Fig. 5.). | ||
Revision as of 01:09, 19 September 2015
fimB (wild-type)
The fim switch is inverted by FimB.The FimB protein inverts the fim switch in the [ON] state to [OFF] state direction.
In order to assay the function of our FimB, we added a GFP coding sequence on the downstream of the fim switch(wild-type).The fim switch[default ON](wild-type)_gfp (BBa_K1632007) emitts fluorescence when expressed, while the fim switch[default OFF](wild-type)_gfp(BBa_K1632008) does not emit florescence when expressed. We also added PBAD/araC on the upstream of fimB(wild-type).PBAD/araC_fimB(wild-type) (BBa_K1632012) can induce the expression of FimB(wild-type) in the presence of arabinose. We co-transformed a fim switch(wild-type)_gfp and a PBAD/araC_fim recombinase in the E. coli DH5alpha strain. We measured the fluorescence intensity of the cells induced by different concentraions of arabinose.
From the experimental results, our FimB(wild-type) inverted the fim switch[default ON](wild-type) from [ON] state to [OFF] state and the fim switch[defult OFF](wild-type) from [OFF] state to [ON] state, dependent on the concentration of arabinose.
When the concentration of FimB(wild-type) increased by increasing the concentration of arabinose, we confirmed that the fluorescence intensity decreased in both [ON] to [OFF] process and [OFF] to [ON] process.
The result of the reporter cell (2) shows that when the concentration of arabinose is increased to 0〜20 microM, the fluorescence intensity increases. This shows the function of FimB(wild-type) inverting the fim switch(wild-type) from [OFF] state to [ON] state. However, when the arabinose concentration is excess (5mM), the fluorescence intensity decreases (Fig. 3). According to [1], this is caused by the excess increase in the inversion rate of the fim switch(wild-type). When the inversion rate is too high, there is not enough time for transcription initiation. Consequently, the GFP expression decreases.
To confirm our results that our FimB(wild-type) inverted the fim switch(wild-type) further, after scattering the samples on a plate, we counted the number of colonies which were expressing GFP and the colonies which were not expressing GFP(Fig.4). The state of fim switch either [ON] or [OFF] in colonies is evaluated from fluorescence. In brief, colonies which contain fim switch[default ON] expresse GFP while colonies which contain fim switch[default OFF] do not express GFP. We counted out the all colonies and colonies which contain fim switch[default ON]. In the results of the reporter cell (1), when the expression of FimB(wild-type) was induced by arabinose, the percentage of [ON] state decreased. Furthermore, from the results of the reporter cell (2), when the expression of FimB(wild-type) was induced, the percentage of [ON] state increased. From the results of the two reporter cells (1) and (2), we successfully confirmed that the fimB protein inverts the fim switch(wild-type) from [ON] state to [OFF] state and from [OFF] state to [ON] state. (Fig.3). This result was consistent with the histograms (Fig. 2)
Also, we incubated the colonies with fluorescence and the colonies without fluorescence. We minipreped cell cultures. Sequence complementarity of the each sample in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all samples (Fig. 5.).
For more information, see [http://2015.igem.org/Team:Tokyo_Tech/Project our work in Tokyo_Tech 2015 wiki].
More information
For more information, see http://2015.igem.org/Team:Tokyo_Tech/Project Our work in Tokyo_Tech 2015 wiki, http://2015.igem.org/Team:Tokyo_Tech/Experiment/ssrA_tag_degradation_assay About ssrA-tag, http://2015.igem.org/Team:Tokyo_Tech/Experiment/Overview_of_fim_inversion_system About ''fim'' inversion system
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]