Difference between revisions of "Part:BBa K1391011:Experience"
(→Applications of BBa_K1391011) |
(→Applications of BBa_K1391011) |
||
Line 5: | Line 5: | ||
===Applications of BBa_K1391011=== | ===Applications of BBa_K1391011=== | ||
− | + | In the brain of a patient with Alzheimer's disease, beta-amyloid protein oligomers accumulate into plaques, which are responsible for the degenerative symptoms of the disease. In order to diagnose Alzheimer's disease, this system uses beta-amyloid oligomer-specific, transmembrane receptors to detect the presence of beta-amyloid oligomers. | |
+ | |||
+ | Human Leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) is a naturally occurring, transmembrane protein receptor that selectively binds beta-amyloid oligomers. LilrB2 belongs to a family of proteins that bind to MHC1 molecules on antigen presenting cells, and is only expressed in monocytes and B-cells (and at lower levels in dendritic cells and natural killer cells) in humans. When beta-amyloid oligomers bind to the extracellular domain of LilrB2, it becomes activated and recruits a protein called cofilin (found inside the cell) to its intracellular domain. | ||
+ | |||
+ | In this detection system, LilrB2 was fused to a linker, a TEV protease (TEVp) cleavage site and a transcription factor (in that order) at its intracellular domain. Cofilin was fused to TEV protease. These modifications allowed the manipulation of the natural operational system of LilrB2 such that when beta-amyloid oligomers bind to the receptor (and activate it) the TEV protease on the recruited cofilin cleaves at the TEVp cleavage site. This releases the transcription factor in to the cytosol, where it is guided to the nucleus of the cell and activates some subsequent (reporter or treatment) module. | ||
===User Reviews=== | ===User Reviews=== |
Revision as of 16:38, 20 October 2014
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
Applications of BBa_K1391011
In the brain of a patient with Alzheimer's disease, beta-amyloid protein oligomers accumulate into plaques, which are responsible for the degenerative symptoms of the disease. In order to diagnose Alzheimer's disease, this system uses beta-amyloid oligomer-specific, transmembrane receptors to detect the presence of beta-amyloid oligomers.
Human Leukocyte immunoglobulin-like receptor subfamily B member 2 (LilrB2) is a naturally occurring, transmembrane protein receptor that selectively binds beta-amyloid oligomers. LilrB2 belongs to a family of proteins that bind to MHC1 molecules on antigen presenting cells, and is only expressed in monocytes and B-cells (and at lower levels in dendritic cells and natural killer cells) in humans. When beta-amyloid oligomers bind to the extracellular domain of LilrB2, it becomes activated and recruits a protein called cofilin (found inside the cell) to its intracellular domain.
In this detection system, LilrB2 was fused to a linker, a TEV protease (TEVp) cleavage site and a transcription factor (in that order) at its intracellular domain. Cofilin was fused to TEV protease. These modifications allowed the manipulation of the natural operational system of LilrB2 such that when beta-amyloid oligomers bind to the receptor (and activate it) the TEV protease on the recruited cofilin cleaves at the TEVp cleavage site. This releases the transcription factor in to the cytosol, where it is guided to the nucleus of the cell and activates some subsequent (reporter or treatment) module.
User Reviews
UNIQcadb1e2190299f06-partinfo-00000000-QINU UNIQcadb1e2190299f06-partinfo-00000001-QINU