Difference between revisions of "Part:BBa K1399004"

(Created page with " == GFP (mut3b) with LVA-ssrA degradation tag == GFP (mut3b) (see part BBa_E0040) with added LVA-ssrA degradation tag. The tag increases GFP turn-over rate, thus providing bette...")
 
m (GFP (mut3b) with LVA-ssrA degradation tag)
Line 1: Line 1:
  
== GFP (mut3b) with LVA-ssrA degradation tag ==
+
<partinfo>BBa_K1399004 short</partinfo>
  
GFP (mut3b) (see part BBa_E0040) with added LVA-ssrA degradation tag. The tag increases GFP turn-over rate, thus providing better temporal resolution of green fluorescence. In the same time, maximal fluorescence amplitudes will be lower as newly formed protein is degraded as soon as it is formed.
+
 
 +
GFP (mut3b) ( [[Part:BBa_E0040]]) with added LVA-ssrA degradation tag. The tag increases GFP turn-over rate, thus providing better temporal resolution of green fluorescence. In the same time, maximal fluorescence amplitudes will be lower as newly formed protein is degraded as soon as it is formed.
 
The tag encodes peptide sequence AANDENYALVA and is recognized by ClpA and ClpX unfoldases and ClpX mediator SspB.[1] ClpA and ClpX then form a proteosome-like complex with ClpP protease and the protein is degraded.[1]  
 
The tag encodes peptide sequence AANDENYALVA and is recognized by ClpA and ClpX unfoldases and ClpX mediator SspB.[1] ClpA and ClpX then form a proteosome-like complex with ClpP protease and the protein is degraded.[1]  
 
The final three residues of the tag determines the strength of interaction with ClpX and thus the final protein degradation rate.[2] The LVA tag is reported to lead to fast protein degradation, degrading GFP with rate -0.018 per minute.[2]  However, be aware that exact protein degradation rate depends on multiple factors: ClpXP and ClpAP protease and SspB mediator concentrations, protein stability, Km of binding to the protease, temperature [3].
 
The final three residues of the tag determines the strength of interaction with ClpX and thus the final protein degradation rate.[2] The LVA tag is reported to lead to fast protein degradation, degrading GFP with rate -0.018 per minute.[2]  However, be aware that exact protein degradation rate depends on multiple factors: ClpXP and ClpAP protease and SspB mediator concentrations, protein stability, Km of binding to the protease, temperature [3].
Line 9: Line 10:
 
[2] Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–6 (1998).
 
[2] Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–6 (1998).
 
[3] Purcell, O., Grierson, C. S., Bernardo, M. Di & Savery, N. J. Temperature dependence of ssrA-tag mediated protein degradation. J. Biol. Eng. 6, 10 (2012).
 
[3] Purcell, O., Grierson, C. S., Bernardo, M. Di & Savery, N. J. Temperature dependence of ssrA-tag mediated protein degradation. J. Biol. Eng. 6, 10 (2012).
 +
 +
 +
<partinfo>BBa_K1399004 SequenceAndFeatures</partinfo>

Revision as of 22:20, 8 October 2014

GFP (mut3b) with LVA-ssrA degradation tag


GFP (mut3b) ( Part:BBa_E0040) with added LVA-ssrA degradation tag. The tag increases GFP turn-over rate, thus providing better temporal resolution of green fluorescence. In the same time, maximal fluorescence amplitudes will be lower as newly formed protein is degraded as soon as it is formed. The tag encodes peptide sequence AANDENYALVA and is recognized by ClpA and ClpX unfoldases and ClpX mediator SspB.[1] ClpA and ClpX then form a proteosome-like complex with ClpP protease and the protein is degraded.[1] The final three residues of the tag determines the strength of interaction with ClpX and thus the final protein degradation rate.[2] The LVA tag is reported to lead to fast protein degradation, degrading GFP with rate -0.018 per minute.[2] However, be aware that exact protein degradation rate depends on multiple factors: ClpXP and ClpAP protease and SspB mediator concentrations, protein stability, Km of binding to the protease, temperature [3].

References

[1] Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. U. S. A. 98, 10584–9 (2001). [2] Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–6 (1998). [3] Purcell, O., Grierson, C. S., Bernardo, M. Di & Savery, N. J. Temperature dependence of ssrA-tag mediated protein degradation. J. Biol. Eng. 6, 10 (2012).



Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 644