Difference between revisions of "Part:BBa K1051115"
Line 17: | Line 17: | ||
<partinfo>BBa_K1051115 parameters</partinfo> | <partinfo>BBa_K1051115 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | |||
===principle=== | ===principle=== | ||
<p>The ZRC1 gene encodes a multicopy suppressor of zinc toxicity in Saccharomyces cerevisiae; however, previously it was reported that the expression of ZRC1 was induced when the intracellular zinc level was decreased. The COT1 and ZRC1 genes of Saccharomyces cerevisiae are structurally related dosage-dependent suppressors of metal toxicity. COT1 confers increased tolerance to high levels of cobalt; ZRC1 confers increased tolerance(Conklin, Culbertson, & Kung, 1994).Zrc1 has six putative trans-membrane domains, and Zrc1-GFP fusion protein was localized to the vacuolar membrane. Zrc1 function as a mechanism to maintain the zinc homeostasis in yeast(Miyabe, Izawa, & Inoue, 2001).</p> | <p>The ZRC1 gene encodes a multicopy suppressor of zinc toxicity in Saccharomyces cerevisiae; however, previously it was reported that the expression of ZRC1 was induced when the intracellular zinc level was decreased. The COT1 and ZRC1 genes of Saccharomyces cerevisiae are structurally related dosage-dependent suppressors of metal toxicity. COT1 confers increased tolerance to high levels of cobalt; ZRC1 confers increased tolerance(Conklin, Culbertson, & Kung, 1994).Zrc1 has six putative trans-membrane domains, and Zrc1-GFP fusion protein was localized to the vacuolar membrane. Zrc1 function as a mechanism to maintain the zinc homeostasis in yeast(Miyabe, Izawa, & Inoue, 2001).</p> | ||
+ | |||
+ | ===Results=== | ||
+ | https://static.igem.org/mediawiki/2013/f/f1/Vm.jpg | ||
+ | |||
+ | ===Reference=== | ||
+ | Conklin, D. S., Culbertson, M. R., & Kung, C. (1994). Interactions between gene products involved in divalent cation transport in Saccharomyces cerevisiae. Molecular and General Genetics MGG, 244(3), 303-31 | ||
+ | Miyabe, S., Izawa, S., & Inoue, Y. (2001). The Zrc1 Is Involved in Zinc Transport System between Vacuole and Cytosol in< i> Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 282(1), 79-83 |
Latest revision as of 04:06, 3 October 2013
ZRC1;Vacuolar Membrane Targeting Protein
After added with 23 prefix and suffix, it can be used as a transporter to the vacuolar membrane of baking yeast. Also, when joining with different flourescent proteins, they can light the inner membrane using such proteins.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal XbaI site found at 52
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 55
- 23INCOMPATIBLE WITH RFC[23]Illegal XbaI site found at 52
- 25INCOMPATIBLE WITH RFC[25]Illegal XbaI site found at 52
- 1000COMPATIBLE WITH RFC[1000]
principle
The ZRC1 gene encodes a multicopy suppressor of zinc toxicity in Saccharomyces cerevisiae; however, previously it was reported that the expression of ZRC1 was induced when the intracellular zinc level was decreased. The COT1 and ZRC1 genes of Saccharomyces cerevisiae are structurally related dosage-dependent suppressors of metal toxicity. COT1 confers increased tolerance to high levels of cobalt; ZRC1 confers increased tolerance(Conklin, Culbertson, & Kung, 1994).Zrc1 has six putative trans-membrane domains, and Zrc1-GFP fusion protein was localized to the vacuolar membrane. Zrc1 function as a mechanism to maintain the zinc homeostasis in yeast(Miyabe, Izawa, & Inoue, 2001).
Results
Reference
Conklin, D. S., Culbertson, M. R., & Kung, C. (1994). Interactions between gene products involved in divalent cation transport in Saccharomyces cerevisiae. Molecular and General Genetics MGG, 244(3), 303-31 Miyabe, S., Izawa, S., & Inoue, Y. (2001). The Zrc1 Is Involved in Zinc Transport System between Vacuole and Cytosol in< i> Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 282(1), 79-83