Difference between revisions of "Part:BBa K1017202"
Line 6: | Line 6: | ||
In our project we use the artificial sRNA(BBa_K1017404[https://parts.igem.org/Part:BBa_K1017404]), which needed to complementary with the SD sequence in the RBS, targeting specifically to the desired genes. Therefore, we also need to design a RBS which only would be bound with our artificial sRNA. Here we call this RBS as rRBS. | In our project we use the artificial sRNA(BBa_K1017404[https://parts.igem.org/Part:BBa_K1017404]), which needed to complementary with the SD sequence in the RBS, targeting specifically to the desired genes. Therefore, we also need to design a RBS which only would be bound with our artificial sRNA. Here we call this RBS as rRBS. | ||
− | We designed the rRBS by employing the sRNA | + | We designed the rRBS by employing the sRNA targetting region from ompF so that the sRNA would only complementary with ompF but not the others in the E.coli we use. We also make the AUG codon sufficiently apart from the SD sequence for ribosome binding. Therefore, other iGEM teams can use this sRNA regulation system in there project by adding this RBS to the upstream of any desired gene, the gene can be regulated by sRNA. |
Revision as of 12:26, 26 September 2013
Regulation RBS-2
sRNA are small (50-250 nucleotide) non-coding RNA molecules produced by bacteria; they are highly structured and contain several stem-loops.sRNAs interact with the targeted mRNAs by imperfect base pairing, occluding the Shine-Dalgarno sequence thus prevent the ribosome from binding to the initiation condon, so the translation would be repressed.
In our project we use the artificial sRNA(BBa_K1017404[1]), which needed to complementary with the SD sequence in the RBS, targeting specifically to the desired genes. Therefore, we also need to design a RBS which only would be bound with our artificial sRNA. Here we call this RBS as rRBS.
We designed the rRBS by employing the sRNA targetting region from ompF so that the sRNA would only complementary with ompF but not the others in the E.coli we use. We also make the AUG codon sufficiently apart from the SD sequence for ribosome binding. Therefore, other iGEM teams can use this sRNA regulation system in there project by adding this RBS to the upstream of any desired gene, the gene can be regulated by sRNA.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]