Difference between revisions of "Part:BBa K1144001"

 
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K1144001 short</partinfo>
 
<partinfo>BBa_K1144001 short</partinfo>
Line 17: Line 16:
 
<partinfo>BBa_K1144001 parameters</partinfo>
 
<partinfo>BBa_K1144001 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===Characterization===
 +
 +
To assess the strength of our GAL4 responsive promoter set (BBa_K1144001, BBa_K1144002, BBa_K1144003 and BBa_K1144004) when induced with Dexamethasone, we performed a fluorometric assay using mCherry as our reporter.Since we don't have our transactivating protein ready yet, we co-transformed our parts into the E. coli DH10B strain with the pAT7002 vector (Aoyama and Chua, 1997), which contains a well characterized Glucocorticoid Responsive Element that also uses the GAL4 DNA binding domain.
 +
 +
[[File:Response1hr.jpg|700px|thumb|center|''' Unsaturated curve where we see how the mCherry reporter appears after the addition of 10 uM dexamethasone, a glucocorticoid. Emmision intensity was measured at 607nm after excitation at 586nm''']]
 +
 +
 +
[[File:Response3hr.jpg|700px|thumb|center|''' Saturated curve for fluorescence. After three hours of the addition of 10 uM dexamethasone the reporter (mCherry) reaches its highest signal. We can see the different strengths depending on the number of UAS boxes. Emmision intensity was measured at 607nm after excitation at 586nm''']]
 +
 +
 +
We also decided to visually inspect our induced transformants. Here two of the images taken using a epifluorescent microscopy with a TRITC filter.
 +
 +
 +
[[File:E1GF.jpg|450px|thumb|left|''' Cells with the E1GF part (BBa_K1144006) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC''']]
 +
 +
 +
[[File:E2GF.jpg|450px|thumb|left|''' Cells with the E2GF part (BBa_K1144006) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC''']]
 +
 +
 +
[[File:E3GF.jpg|450px|thumb|left|''' Cells with the E3GF part (BBa_K1144006) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC''']]
 +
 +
[[File:E4GF.jpg|450px|thumb|right|''' Cells with the E4GF part (BBa_K1144008) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC''']]
 +
 +
<html>
 +
</html>
 +
 +
====References====
 +
Aoyama, T. & Chua N. (1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. ''The Plant Journal, 11''(3): 605-612.

Revision as of 04:43, 28 September 2013

GAL1 promoter with KOZAC

GAL1 promoter from Saccharomyces cerevisiae. 1 UAS site allows GAL4 binding domain to enhance the expression from this promoter. KOZAC sequence added

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 84
  • 1000
    COMPATIBLE WITH RFC[1000]


Characterization

To assess the strength of our GAL4 responsive promoter set (BBa_K1144001, BBa_K1144002, BBa_K1144003 and BBa_K1144004) when induced with Dexamethasone, we performed a fluorometric assay using mCherry as our reporter.Since we don't have our transactivating protein ready yet, we co-transformed our parts into the E. coli DH10B strain with the pAT7002 vector (Aoyama and Chua, 1997), which contains a well characterized Glucocorticoid Responsive Element that also uses the GAL4 DNA binding domain.

Unsaturated curve where we see how the mCherry reporter appears after the addition of 10 uM dexamethasone, a glucocorticoid. Emmision intensity was measured at 607nm after excitation at 586nm


Saturated curve for fluorescence. After three hours of the addition of 10 uM dexamethasone the reporter (mCherry) reaches its highest signal. We can see the different strengths depending on the number of UAS boxes. Emmision intensity was measured at 607nm after excitation at 586nm


We also decided to visually inspect our induced transformants. Here two of the images taken using a epifluorescent microscopy with a TRITC filter.


Cells with the E1GF part (BBa_K1144006) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC


Cells with the E2GF part (BBa_K1144006) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC


Cells with the E3GF part (BBa_K1144006) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC
Cells with the E4GF part (BBa_K1144008) showing their fluorescent reporter, mCherry, after induction with 10 uM dexamethasone! The filter used was TRITC

References

Aoyama, T. & Chua N. (1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. The Plant Journal, 11(3): 605-612.