Difference between revisions of "Part:BBa K808003"
Line 2: | Line 2: | ||
<partinfo>BBa_K808003 short</partinfo> | <partinfo>BBa_K808003 short</partinfo> | ||
− | The small subunit B1 of the tripartite tricarboxylate transporter family (tctB_162, 17 kDa) was isolated from ''Comamonas testosteroni KF-1.'' The tripartite tricarboxylate transporter system consists of three different proteins: a periplasmatic solute binding receptor, a membrane protein with 12 putative transmembrane alpha-helical spanners (in this case tctB_162), and a small poorly conserved membrane proteine with four putative transmembrane alpha-helical spanners<sup>[1]</sup>.The strain was purchased from Leibniz Institute DMSZ-German Collection of Microorganism and Cell Cultures (DMSZ no. 14576). The original sequence contains a Pst1 recognition site. To eliminate this recognition site a directed-site mutagenic PCR was performed. (For more datails:[http://2012.igem.org/Team:TU_Darmstadt/Protocols/mutagenic_PCR mutagenic PCR) To characterized the structure of the tctB_162 bioinformatic tools like '''P '''rotein '''H '''omology/anolog '''Y ''' '''R '''ecognition '''E '''ngine V 2.0 (PHYRE2), I-TASSER servers, protein '''B '''asic '''L '''ocal '''A '''ligment '''S '''earch '''T '''ool (BLAST) and TMHMM was used. The TMHMM predicted a transmembrane protein with 5 alpha-helical spanners (Fig. 1). The N-teminus is with a probability of over 99 % in cytoplasmatic. The NCBI Protein BLAST results shows that the tctB_162 subunit B1 belongs to the tctB superfamily. | + | The small subunit B1 of the tripartite tricarboxylate transporter family (tctB_162, 17 kDa) was isolated from ''Comamonas testosteroni KF-1.'' The tripartite tricarboxylate transporter system consists of three different proteins: a periplasmatic solute binding receptor, a membrane protein with 12 putative transmembrane alpha-helical spanners (in this case tctB_162), and a small poorly conserved membrane proteine with four putative transmembrane alpha-helical spanners<sup>[1]</sup>.The strain was purchased from Leibniz Institute DMSZ-German Collection of Microorganism and Cell Cultures (DMSZ no. 14576). The original sequence contains a Pst1 recognition site. To eliminate this recognition site a directed-site mutagenic PCR was performed. (For more datails:[http://2012.igem.org/Team:TU_Darmstadt/Protocols/mutagenic_PCR mutagenic PCR)] To characterized the structure of the tctB_162 bioinformatic tools like '''P '''rotein '''H '''omology/anolog '''Y ''' '''R '''ecognition '''E '''ngine V 2.0 (PHYRE2), I-TASSER servers, protein '''B '''asic '''L '''ocal '''A '''ligment '''S '''earch '''T '''ool (BLAST) and TMHMM was used. The TMHMM predicted a transmembrane protein with 5 alpha-helical spanners (Fig. 1). The N-teminus is with a probability of over 99 % in cytoplasmatic. The NCBI Protein BLAST results shows that the tctB_162 subunit B1 belongs to the tctB superfamily. |
[[Image:File-tctb162_tmhmm.png|900px|thumb|center|Figure 1. '''TMHMM prediction of the tctB_162 subunit B1''' It shows 5 alpha-helical spanners.]] | [[Image:File-tctb162_tmhmm.png|900px|thumb|center|Figure 1. '''TMHMM prediction of the tctB_162 subunit B1''' It shows 5 alpha-helical spanners.]] |
Revision as of 21:59, 26 September 2012
tctB_162: small subunit B1 of the tripartite tricarboxylate transporter family
The small subunit B1 of the tripartite tricarboxylate transporter family (tctB_162, 17 kDa) was isolated from Comamonas testosteroni KF-1. The tripartite tricarboxylate transporter system consists of three different proteins: a periplasmatic solute binding receptor, a membrane protein with 12 putative transmembrane alpha-helical spanners (in this case tctB_162), and a small poorly conserved membrane proteine with four putative transmembrane alpha-helical spanners[1].The strain was purchased from Leibniz Institute DMSZ-German Collection of Microorganism and Cell Cultures (DMSZ no. 14576). The original sequence contains a Pst1 recognition site. To eliminate this recognition site a directed-site mutagenic PCR was performed. (For more datails:[http://2012.igem.org/Team:TU_Darmstadt/Protocols/mutagenic_PCR mutagenic PCR)] To characterized the structure of the tctB_162 bioinformatic tools like P rotein H omology/anolog Y R ecognition E ngine V 2.0 (PHYRE2), I-TASSER servers, protein B asic L ocal A ligment S earch T ool (BLAST) and TMHMM was used. The TMHMM predicted a transmembrane protein with 5 alpha-helical spanners (Fig. 1). The N-teminus is with a probability of over 99 % in cytoplasmatic. The NCBI Protein BLAST results shows that the tctB_162 subunit B1 belongs to the tctB superfamily.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 291
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 55
References
[1] Sasoh, M., E. Masai, et al. (2006). "Characterization of the terephthalate degradation genes of Comamonas sp. strain E6." Appl Environ Microbiol 72(3): 1825-1832.
- Fukuhara, Y., K. Inakazu, et al. (2010). "Characterization of the isophthalate degradation genes of Comamonas sp. strain E6." Appl Environ Microbiol 76(2): 519-527.
- Kamimura, N., T. Aoyama, et al. (2010). "Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene." Appl Environ Microbiol 76(24): 8093-8101.
- Winnen, B., R. N. Hvorup, et al. (2003). "The tripartite tricarboxylate transporter (TTT) family." Res Microbiol 154(7): 457-465.
- Protein structure prediction on the web: a case study using the PhyreKelley LA and Sternberg MJE.Nature Protocols 4, 363 - 371 (2009 server
- Yang Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, vol 9, 40 (2008).
- Ambrish Roy, Alper Kucukural, Yang Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, vol 5, 725-738 (2010).
- Ambrish Roy, Jianyi Yang, Yang Zhang. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research, doi:10.1093/nar/gks372 (2012)
- Prediction of twin-arginine signal peptides. Jannick Dyrløv Bendtsen, Henrik Nielsen, David Widdick, Tracy Palmer and Søren Brunak. BMC bioinformatics 2005 6: 167.
- SignalP 4.0: discriminating signal peptides from transmembrane regions Thomas Nordahl Petersen, Søren Brunak, Gunnar von Heijne & Henrik Nielsen Nature Methods, 8:785-786, 2011
- Erik L.L. Sonnhammer, Gunnar von Heijne, and Anders Krogh:A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182,Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998