Difference between revisions of "Part:BBa K896000"
Cutelucypoop (Talk | contribs) |
|||
Line 2: | Line 2: | ||
<partinfo>BBa_K896000 short</partinfo> | <partinfo>BBa_K896000 short</partinfo> | ||
− | SQR introduction: | + | SQR introduction:<p></p> |
Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool.<p></p> | Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool.<p></p> | ||
Above are sulfide-induced sulfide-Quinone Reductase with the electron transport system.<p></p> | Above are sulfide-induced sulfide-Quinone Reductase with the electron transport system.<p></p> | ||
Line 8: | Line 8: | ||
− | Cloning of SQR gene: | + | Cloning of SQR gene:<p></p> |
SQR gene came from Synechococcus elongatus PCC7002 because the hypersaline strain S. elongatus PCC 7002, which is already sequenced, is 96% similar to O.limnetica SQR gene.<p></p> | SQR gene came from Synechococcus elongatus PCC7002 because the hypersaline strain S. elongatus PCC 7002, which is already sequenced, is 96% similar to O.limnetica SQR gene.<p></p> | ||
− | Figure 1[[Image:Cloning SQR.jpg]] | + | Figure 1[[Image:Cloning SQR.jpg]]<p></p> |
− | Function analysis of SQR gene: | + | Function analysis of SQR gene:<p></p> |
'''Method:''' DCMU was added in the medium to inhibit photosystem II, and therefore only sodium sulfide in the medium can provide electron for carbon photoassimilation. By creating different dilution of sodium sulfide, the more sodium sulfide was present, the better the growth of cyanobacteria was.<p></p> | '''Method:''' DCMU was added in the medium to inhibit photosystem II, and therefore only sodium sulfide in the medium can provide electron for carbon photoassimilation. By creating different dilution of sodium sulfide, the more sodium sulfide was present, the better the growth of cyanobacteria was.<p></p> | ||
Revision as of 03:05, 27 September 2012
SQR(sulfide quinone reductase),from Synechococcus sp. PCC 7002 plasmid pAQ7
SQR introduction: Sulfide-dependent anoxygenic photosynthesis, driven by photosystem I (PS/I) alone, among cyanobacteria was first described for Oscillatoria limnetica from Solar Lake. Later photosynthetic sulfide oxidation in O. limnetica led to the discovery of sulfide-quinone reductase (SQR; E.C.1.8.5.′), a novel enzyme that transfers electrons from sulfide into the quinone pool. Above are sulfide-induced sulfide-Quinone Reductase with the electron transport system.(Cohen, Y., E. Padan, and M. Shilo, Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacteriol, 1975. 123(3): p. 855-61.)
Results:
After establishing a H2S standard curve to quantify H2S concentration, different H2S concentration challenge SQR transformed E.coli and H2S consumption in 24hrs or 48hrs were tested. The result showed that SQR transformed E.coli consumed much more H2S compred to the blank control, Str transformed E.coli. Our SQR transformed E.coli depleted much more H2S in 48 hours than in 24 hours timepoint.(figure 2A,2B) And SQR transformed E.coli consumed H2S dramatically.(figure 3) Following were results in our experiment. Figure 2 (A)different concentration of H2S under 24 hrs (B)different concentration of H2S under 48 hrs Figure 3Conclusion
Our cloning product SQR(sulfide quinone reductase),from Synechococcus sp. PCC 7002 plasmid pAQ7, could transfer electrons from sulfide into the quinone pool.References
1.Facultative Anoxygenic Photosynthesis in the Cyanobacterium Oscillatoria limnetica YEHUDA COHEN,* ETANA PADAN, AND MOSHE SHILO Department of Microbiological Chemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel Received for publication 9 May 1975 2.Sulfide oxidation in gram-negative bacteria by expression of the sulfide–quinone reductase gene of Rhodobacter capsulatus and by electron transport to ubiquinone Hiroomi Shibata and Shigeki Kobayashi 2001 3.Sulfur metabolism in Thiorhodoceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Leeuwenhoek, 30: 225–238 Trüper, H.G., and Schlegel, H.G. 1964.
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 349