Difference between revisions of "Part:BBa K774001:Design"
(→Bacterial) |
(→Bacterial) |
||
Line 11: | Line 11: | ||
==Bacterial== | ==Bacterial== | ||
+ | [[Image:NRPyeaR.png | center | 300px]] | ||
− | |||
A graphical representation of PyeaR. In the higher image PyeaR's activity is being repressed by both Nar and NsrR preventing transcription and the ultimate expression of a reporter. In the lower image nitrate/nitrite molecules have inhibited the activity of Nar, and nitric oxide has inhibited activity of NsrR, allowing for transcription to occur and subsequent expression of a reporter. | A graphical representation of PyeaR. In the higher image PyeaR's activity is being repressed by both Nar and NsrR preventing transcription and the ultimate expression of a reporter. In the lower image nitrate/nitrite molecules have inhibited the activity of Nar, and nitric oxide has inhibited activity of NsrR, allowing for transcription to occur and subsequent expression of a reporter. |
Revision as of 08:42, 26 September 2012
Six new biobricks produced and submitted to the registry with characterisation from fluorescence-based experiments.
Parts produced from this project:
Bacterial-Mammalian/B-M (PyeaR-CArG) Hybrid Promoter -- Mammalian-Bacterial/M-B (CArG-PyeaR) Hybrid Promoter -- B-M + eCFP -- B-M + RFP -- M-B + eCFP -- M-B + RFP
Our main project has resulted in the production of a hybrid bacterial and mammalian promoter optimised for induction by nitric oxide, nitrates and nitrites. We have ligated PyeaR, a known bacterial promoter and Part BBa_K216005 (Cambridge 2009) in the parts registry, with its mammalian counterpart, CArG. The resulting hybrid promoter has been synthesised in two orientations; PyeaR (bacterial, B) upstream of CArG (mammalian, M), nicknamed (B-M); and CArG upstream of PyeaR (M-B). These orientations were submitted to the parts registry as our first two biobricks.
Bacterial
A graphical representation of PyeaR. In the higher image PyeaR's activity is being repressed by both Nar and NsrR preventing transcription and the ultimate expression of a reporter. In the lower image nitrate/nitrite molecules have inhibited the activity of Nar, and nitric oxide has inhibited activity of NsrR, allowing for transcription to occur and subsequent expression of a reporter.