Difference between revisions of "Part:BBa K808005"
Line 15: | Line 15: | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
<partinfo>BBa_K808005 SequenceAndFeatures</partinfo> | <partinfo>BBa_K808005 SequenceAndFeatures</partinfo> | ||
− | |||
− | |||
PHYRE2 - http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index | PHYRE2 - http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index | ||
+ | Protein structure prediction on the web: a case study using the PhyreKelley LA and Sternberg MJE.Nature Protocols 4, 363 - 371 (2009 server | ||
− | + | I-TaSSER server - http://zhanglab.ccmb.med.umich.edu/I-TASSER/ | |
+ | Yang Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, vol 9, 40 (2008). | ||
+ | Ambrish Roy, Alper Kucukural, Yang Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, vol 5, 725-738 (2010). | ||
+ | Ambrish Roy, Jianyi Yang, Yang Zhang. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research, doi:10.1093/nar/gks372 (2012) | ||
− | + | http://www.cbs.dtu.dk/services/TatP/ - Prediction of Twin-arginine signal peptides | |
− | + | ||
− | + | ||
'''Prediction of twin-arginine signal peptides.''' Jannick Dyrløv Bendtsen, Henrik Nielsen, David Widdick, Tracy Palmer and Søren Brunak. BMC bioinformatics 2005 6: 167. | '''Prediction of twin-arginine signal peptides.''' Jannick Dyrløv Bendtsen, Henrik Nielsen, David Widdick, Tracy Palmer and Søren Brunak. BMC bioinformatics 2005 6: 167. | ||
− | + | http://www.cbs.dtu.dk/services/SignalP/ - Prediction of Signal peptide and cleavage sites in gram+, gram- and eukaryotic amino acid sequences | |
'''SignalP 4.0: discriminating signal peptides from transmembrane regions''' Thomas Nordahl Petersen, Søren Brunak, Gunnar von Heijne & Henrik Nielsen Nature Methods, 8:785-786, 2011 | '''SignalP 4.0: discriminating signal peptides from transmembrane regions''' Thomas Nordahl Petersen, Søren Brunak, Gunnar von Heijne & Henrik Nielsen Nature Methods, 8:785-786, 2011 | ||
− | + | http://www.cbs.dtu.dk/services/TMHMM/ - Prediciton of transmembrane helices in proteins | |
− | + | ||
− | + | ||
− | + | '''Erik L.L. Sonnhammer, Gunnar von Heijne, and Anders Krogh''':A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182,Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998 | |
+ | http://www.sciencegateway.org/tools/proteinmw.htm - Protein Molecular Weight Caltulator | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Revision as of 11:55, 24 September 2012
tctB_197: small subunit B2 of the tripartite tricarboxylate transporter family
The small subunit B1 of the tripartite tricarboxylate transporter family (tctB_197, 20,44 kDa) was isolated from Comamonas testosteroni KF-1. The tripartite tricarboxylate transporter system consists of three different proteins: a periplasmatic solute binding receptor, a membrane protein with 12 putative transmembrane alpha-helical spanners (in this case tctB_197), and a small poorly conserved membrane proteine with four putative transmembrane alpha-helical spanners.[1] The strain was purchased from Leibniz Institute DMSZ-German Collection of Microorganism and Cell Cultures (DMSZ no. 14576). To characterized the structure of the tctB_197 bioinformatic tools like Protein Homology/anologY Recognition Engine V 2.0 (PHYRE2), I-TASSER servers, and TMHMM was used. The TMHMM predicted a transmembrane protein with 4 alpha-helical spanners (Fig. 1). The NCBI Protein BLAST results shows that the tctB_197 subunit B2 belongs to the tctB superfamily. Phyre2 an I-Tasser server homology modelling did not give a significant result for the structure of the tctB_197 subunit B2.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 18
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 522
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 345
PHYRE2 - http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index Protein structure prediction on the web: a case study using the PhyreKelley LA and Sternberg MJE.Nature Protocols 4, 363 - 371 (2009 server
I-TaSSER server - http://zhanglab.ccmb.med.umich.edu/I-TASSER/ Yang Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, vol 9, 40 (2008).
Ambrish Roy, Alper Kucukural, Yang Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, vol 5, 725-738 (2010).
Ambrish Roy, Jianyi Yang, Yang Zhang. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Research, doi:10.1093/nar/gks372 (2012)
http://www.cbs.dtu.dk/services/TatP/ - Prediction of Twin-arginine signal peptides
Prediction of twin-arginine signal peptides. Jannick Dyrløv Bendtsen, Henrik Nielsen, David Widdick, Tracy Palmer and Søren Brunak. BMC bioinformatics 2005 6: 167.
http://www.cbs.dtu.dk/services/SignalP/ - Prediction of Signal peptide and cleavage sites in gram+, gram- and eukaryotic amino acid sequences
SignalP 4.0: discriminating signal peptides from transmembrane regions Thomas Nordahl Petersen, Søren Brunak, Gunnar von Heijne & Henrik Nielsen Nature Methods, 8:785-786, 2011
http://www.cbs.dtu.dk/services/TMHMM/ - Prediciton of transmembrane helices in proteins
Erik L.L. Sonnhammer, Gunnar von Heijne, and Anders Krogh:A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182,Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998
http://www.sciencegateway.org/tools/proteinmw.htm - Protein Molecular Weight Caltulator