Difference between revisions of "Part:BBa K590034"

Line 8: Line 8:
 
FabH2 is from ''Bacillus subtilis''. The FabH family of proteins initiates fatty acid elongation by converting an Acyl-CoA into an Acyl-ACP, with is extended by 2 carbon units to form longer chain length fatty acids. Normally, FabH proteins use a simple 2-carbon acetyl-CoA to start fatty acid biosynthesis, resulting in linear fatty acids. However, FabH2 can also use Isobutyryl-CoA, Isovaleryl-CoA, and 2-Methylbutyryl-CoA (products from Valine, Leucine, and Isoleucine degradation), resulting in 2-methyl branched fatty acid production. In addition, FabH2  has been hypothesized to start fatty acid elongation with a straight 3-carbon unit(propionyl-CoA), yielding odd chain length fatty acids, which could be converted into even chain length alkanes by the[https://parts.igem.org/wiki/index.php?title=Part:BBa_K590025 Petrobrick]. Expression of FabH2 on the same  high copy number constiuitive plasmid as the PetroBrick( as in Part [https://parts.igem.org/wiki/index.php?title=Part:BBa_K590030 BBa_K590030]) results in slow cell growth( insert picture), and low alkane yield( under 10 mg/L vs. approximately 170 mg/L in the [https://parts.igem.org/wiki/index.php?title=Part:BBa_K590025 Petrobrick]).
 
FabH2 is from ''Bacillus subtilis''. The FabH family of proteins initiates fatty acid elongation by converting an Acyl-CoA into an Acyl-ACP, with is extended by 2 carbon units to form longer chain length fatty acids. Normally, FabH proteins use a simple 2-carbon acetyl-CoA to start fatty acid biosynthesis, resulting in linear fatty acids. However, FabH2 can also use Isobutyryl-CoA, Isovaleryl-CoA, and 2-Methylbutyryl-CoA (products from Valine, Leucine, and Isoleucine degradation), resulting in 2-methyl branched fatty acid production. In addition, FabH2  has been hypothesized to start fatty acid elongation with a straight 3-carbon unit(propionyl-CoA), yielding odd chain length fatty acids, which could be converted into even chain length alkanes by the[https://parts.igem.org/wiki/index.php?title=Part:BBa_K590025 Petrobrick]. Expression of FabH2 on the same  high copy number constiuitive plasmid as the PetroBrick( as in Part [https://parts.igem.org/wiki/index.php?title=Part:BBa_K590030 BBa_K590030]) results in slow cell growth( insert picture), and low alkane yield( under 10 mg/L vs. approximately 170 mg/L in the [https://parts.igem.org/wiki/index.php?title=Part:BBa_K590025 Petrobrick]).
  
By moving FabH2 into a low copy number inducible vector(As in) [https://parts.igem.org/wiki/index.php?title=Part:BBa_K314103 IPTG inducible PetroBrick ].  [http://2011.igem.org/Team:Washington/alkanebiosynthesis#100mL_M9_minGlucose_Media_Prep  M9 production media] + 5uM IPTG. Alkanes were extracted after 24 hours. In addition, GC runs were performed on uninduced FabH2/Petrobrick cultures, and on cells expressing only the PetroBrick.
+
By moving FabH2 into a low copy number inducible vector(As in [https://parts.igem.org/wiki/index.php?title=Part:BBa_K314103 The FabBrick], we were able to get C14 and C16 alkane production, completing the alkane spectrum from C13 to C17. This is the first time that even chain length alkanes have been recombinately produced. 
 
[[Image:FabBrickGCMS.png|left|400px|thumb|GCMS  trace confirming C16 alkane produced only upon FabBrick induction. ]]
 
[[Image:FabBrickGCMS.png|left|400px|thumb|GCMS  trace confirming C16 alkane produced only upon FabBrick induction. ]]
  

Revision as of 16:52, 26 October 2011

FabH2

This part encodes FabH2. [http://2011.igem.org/Team:Washington 2011 University of Washington iGEM Team] has produced even chain length alkanes using this part and the Petrobrick. In addition, expression of this part and the Petrobrick should theoretically produce branched chain alkanes, but we have not been able to demonstrate this effect, possibly due to the absence of the appropriate substrates in E. coli

Usage and Biology

FabH2 is from Bacillus subtilis. The FabH family of proteins initiates fatty acid elongation by converting an Acyl-CoA into an Acyl-ACP, with is extended by 2 carbon units to form longer chain length fatty acids. Normally, FabH proteins use a simple 2-carbon acetyl-CoA to start fatty acid biosynthesis, resulting in linear fatty acids. However, FabH2 can also use Isobutyryl-CoA, Isovaleryl-CoA, and 2-Methylbutyryl-CoA (products from Valine, Leucine, and Isoleucine degradation), resulting in 2-methyl branched fatty acid production. In addition, FabH2 has been hypothesized to start fatty acid elongation with a straight 3-carbon unit(propionyl-CoA), yielding odd chain length fatty acids, which could be converted into even chain length alkanes by thePetrobrick. Expression of FabH2 on the same high copy number constiuitive plasmid as the PetroBrick( as in Part BBa_K590030) results in slow cell growth( insert picture), and low alkane yield( under 10 mg/L vs. approximately 170 mg/L in the Petrobrick).

By moving FabH2 into a low copy number inducible vector(As in The FabBrick, we were able to get C14 and C16 alkane production, completing the alkane spectrum from C13 to C17. This is the first time that even chain length alkanes have been recombinately produced.

GCMS trace confirming C16 alkane produced only upon FabBrick induction.


MS spectrum verifies peak contains C16 alkane.










Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Unknown
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Unknown
  • 23
    INCOMPATIBLE WITH RFC[23]
    Unknown
  • 25
    INCOMPATIBLE WITH RFC[25]
    Unknown
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 355