Difference between revisions of "Part:BBa K606027:Experience"
(→User Reviews) |
|||
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
This experience page is provided so that any user may enter their experience using this part.<BR>Please enter | This experience page is provided so that any user may enter their experience using this part.<BR>Please enter | ||
Line 19: | Line 18: | ||
<!-- End of the user review template --> | <!-- End of the user review template --> | ||
<!-- DON'T DELETE --><partinfo>BBa_K606027 EndReviews</partinfo> | <!-- DON'T DELETE --><partinfo>BBa_K606027 EndReviews</partinfo> | ||
+ | |||
+ | {{:Team:Paris_Bettencourt/tpl_test}} | ||
+ | <html> | ||
+ | <h1>The YFP Concentrator design</h1> | ||
+ | |||
+ | <h2>Introduction</h2> | ||
+ | |||
+ | <p>One of the main result of Dubey and Ben-Yehuda papers proving the existence of nanotubes is the evidence of GFP diffusion from B.subtilis cells one to another. | ||
+ | However the resulting fluorescence from this diffusion is quite weak supposedly due to the limited number of molecules passing through nanotubes. | ||
+ | One alternative to get a better fluorescence signal with the same amount of fluorescent molecules is to concentrate them in foci. In order to do this we decided to use an already existing system based on a <em>YFP:TetR</em> fusion protein. | ||
+ | <p> YFP:TetR is composed of Yellow Fluorescent Protein (YFP) and the Tetracycline Repressor Protein (TetR) that binds to the Tet operator sequence (TetO). Using the TetO array composed of a 10kb repeat of TetO sequences, we can concentrate YFP:TetR in several loci and increase the fluorescence sensitivity. | ||
+ | The two different constructs, YFP:TetR and TetO Array, come from François-Xavier Barre, Andrew Wright and Dave Lane (Kinetics of plasmid segregation, Molecular Microbiology, 2004)</p> | ||
+ | |||
+ | <p> We use this design as a proof of the nanotube concept between <i>B.Subtilis - B.Subtilis</i> and <i>B.Subtilis - E. Coli</i>.</p> | ||
+ | |||
+ | <h2>Making the YFP:tetR diffuse through the tube</h2> | ||
+ | |||
+ | <p><em>In the emitter cell <i>(B. Subtilis)</i></em>, we have inserted an expression system for the YFP:tetR. It contains the constitutive promoter pVeg, the RBS for <i>B.subtilis</i> and the YFP:tetR protein. Constitutively expressed YFP:tetR molecules will diffuse through the nanotube to the receiver cell.</p> | ||
+ | |||
+ | <p><em>In the receiver cell <i>(B. Subtilis or E. Coli)</i></em>, there is the TetO array where diffused YFP:tetR will concentrate. The YFP is the monitor of the signal.</p> | ||
+ | |||
+ | <p>The principle of the design is summed up in the image below</p> | ||
+ | <br/> | ||
+ | <center><img src="https://static.igem.org/mediawiki/2011/5/56/TetR-YFP4.jpg"> | ||
+ | <p><u>Fig1:</u> Schematics of the YFP concentration design</center></p> | ||
+ | <br/> | ||
+ | |||
+ | |||
+ | <h2>Model and experiments</h2> | ||
+ | |||
+ | <p>To know more about what we have done on this system and in the experiments, we invite you to visit the corresponding <em>diffusion modeling</em> and <em>experiment</em> pages:</p> | ||
+ | <ul> | ||
+ | <li><em><a href="http://2011.igem.org/Team:Paris_Bettencourt/Modeling/Diffusion">Diffusion modelling</a></em></li> | ||
+ | <li><em><a href="http://2011.igem.org/Team:Paris_Bettencourt/Experiments/YFP_TetR_diffusion">Experiments</a></em></li> | ||
+ | </ul> | ||
+ | <br/> | ||
+ | |||
+ | |||
+ | <!-- PAGE FOOTER -- ITEMS FROM COLUMN ! HAVE BEEN MOVED HERE -- RDR --> | ||
+ | |||
+ | <div id="footer-wrapper"> | ||
+ | <div id="footer"> | ||
+ | <div id="f-poweredbyico"><a href="http://www.mediawiki.org/"><img src="/wiki/skins/common/images/poweredby_mediawiki_88x31.png" height="31" width="88" alt="Powered by MediaWiki" /></a></div> <div id="f-copyrightico"><a href="http://creativecommons.org/licenses/by/3.0/"><img src="http://i.creativecommons.org/l/by/3.0/88x31.png" alt="Attribution 3.0 Unported" width="88" height="31" /></a></div> <ul id="f-list"> | ||
+ | |||
+ | |||
+ | <!-- Recentchanges is not handles well DEBUG --> | ||
+ | <li id="t-recentchanges"><a href="/Special:RecentChanges" | ||
+ | title='Recent changes'>Recent changes</a></li> | ||
+ | |||
+ | <li id="t-whatlinkshere"><a href="/Special:WhatLinksHere/Team:Paris_Bettencourt/Modeling" | ||
+ | title="List of all wiki pages that link here [j]" accesskey="j">What links here</a></li> | ||
+ | |||
+ | <li id="t-recentchangeslinked"><a href="/Special:RecentChangesLinked/Team:Paris_Bettencourt/Modeling" | ||
+ | title="Recent changes in pages linked from this page [k]" accesskey="k">Related changes</a></li> | ||
+ | |||
+ | |||
+ | |||
+ | <li id="t-upload"><a href="/Special:Upload" | ||
+ | title="Upload files [u]" accesskey="u">Upload file</a> | ||
+ | </li> | ||
+ | <li id="t-specialpages"><a href="/Special:SpecialPages" | ||
+ | title="List of all special pages [q]" accesskey="q">Special pages</a> | ||
+ | |||
+ | </li> | ||
+ | <li><a href='/Special:Preferences'>My preferences</a></li> | ||
+ | </ul> | ||
+ | </div> <!-- close footer --> | ||
+ | <div id='footer'> | ||
+ | <ul id="f-list"> | ||
+ | |||
+ | <li id="t-print"><a href="/wiki/index.php?title=Team:Paris_Bettencourt/Modeling&printable=yes" | ||
+ | title="Printable version of this page [p]" accesskey="p">Printable version</a> | ||
+ | |||
+ | </li> | ||
+ | |||
+ | <li id="t-permalink"><a href="/wiki/index.php?title=Team:Paris_Bettencourt/Modeling&oldid=86565" | ||
+ | title="Permanent link to this revision of the page">Permanent link</a> | ||
+ | </li> | ||
+ | |||
+ | |||
+ | <li id="privacy"><a href="/2011.igem.org:Privacy_policy" title="2011.igem.org:Privacy policy">Privacy policy</a></li> | ||
+ | <li id="disclaimer"><a href="/2011.igem.org:General_disclaimer" title="2011.igem.org:General disclaimer">Disclaimers</a></li> | ||
+ | </ul> | ||
+ | |||
+ | </div> <!-- close footer --> | ||
+ | </div> <!-- close footer-wrapper --> | ||
+ | </div> | ||
+ | </html> |
Revision as of 17:37, 22 October 2011
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
Applications of BBa_K606027
User Reviews
UNIQ558acf527eb7ba99-partinfo-00000000-QINU UNIQ558acf527eb7ba99-partinfo-00000001-QINU
Team:Paris Bettencourt/tpl test
The YFP Concentrator design
Introduction
One of the main result of Dubey and Ben-Yehuda papers proving the existence of nanotubes is the evidence of GFP diffusion from B.subtilis cells one to another. However the resulting fluorescence from this diffusion is quite weak supposedly due to the limited number of molecules passing through nanotubes. One alternative to get a better fluorescence signal with the same amount of fluorescent molecules is to concentrate them in foci. In order to do this we decided to use an already existing system based on a YFP:TetR fusion protein.
YFP:TetR is composed of Yellow Fluorescent Protein (YFP) and the Tetracycline Repressor Protein (TetR) that binds to the Tet operator sequence (TetO). Using the TetO array composed of a 10kb repeat of TetO sequences, we can concentrate YFP:TetR in several loci and increase the fluorescence sensitivity. The two different constructs, YFP:TetR and TetO Array, come from François-Xavier Barre, Andrew Wright and Dave Lane (Kinetics of plasmid segregation, Molecular Microbiology, 2004)
We use this design as a proof of the nanotube concept between B.Subtilis - B.Subtilis and B.Subtilis - E. Coli.
Making the YFP:tetR diffuse through the tube
In the emitter cell (B. Subtilis), we have inserted an expression system for the YFP:tetR. It contains the constitutive promoter pVeg, the RBS for B.subtilis and the YFP:tetR protein. Constitutively expressed YFP:tetR molecules will diffuse through the nanotube to the receiver cell.
In the receiver cell (B. Subtilis or E. Coli), there is the TetO array where diffused YFP:tetR will concentrate. The YFP is the monitor of the signal.
The principle of the design is summed up in the image below
Fig1: Schematics of the YFP concentration design
Model and experiments
To know more about what we have done on this system and in the experiments, we invite you to visit the corresponding diffusion modeling and experiment pages: