Difference between revisions of "Part:BBa K404109"
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
[[Image:Freiburg10_VectorplasmidBricks 6.png|thumb|center|480px]]<br> | [[Image:Freiburg10_VectorplasmidBricks 6.png|thumb|center|480px]]<br> | ||
− | + | <h3>General Informations</h3> | |
Thymidine kinase (TK) (EC 2.7.1.21) is known to be involved in the salvage pathway of nucleosides to nucleotides (Andrei et al. 2005). | Thymidine kinase (TK) (EC 2.7.1.21) is known to be involved in the salvage pathway of nucleosides to nucleotides (Andrei et al. 2005). | ||
Due to its broader spectrum for different substrates, herpes simplex virus thymidine kinase (HSV-TK) is widely used in gene therapy approaches instead of endogenous thymidine kinases (Black et al. 1996). The transgenic introduced HSV-TK monophosphrylates nucleosides or nucleoside analogs such as ganciclovir (GCV) or acyclovir (AVC) followed by further phosphorylation through cellular kinases to nucleoside triphsphosphates. Incorporation of nucleotide analogs such as ganciclovir triphosphate or acyclovir triphosphates leads to DNA chain termination (Reardon 1989) and finally results in cell death. | Due to its broader spectrum for different substrates, herpes simplex virus thymidine kinase (HSV-TK) is widely used in gene therapy approaches instead of endogenous thymidine kinases (Black et al. 1996). The transgenic introduced HSV-TK monophosphrylates nucleosides or nucleoside analogs such as ganciclovir (GCV) or acyclovir (AVC) followed by further phosphorylation through cellular kinases to nucleoside triphsphosphates. Incorporation of nucleotide analogs such as ganciclovir triphosphate or acyclovir triphosphates leads to DNA chain termination (Reardon 1989) and finally results in cell death. | ||
Genetic modifications of the active site represented by a tripeptide motif in thymidine kinase increases the substrate affinity of HSV-TK towards GCV and ACV (Black et al. 1996). Two promising mutant HSV-TKs have been found by large mutagenesis screenings modifying several amino acids and conducting sensitivity assays for ganciclovir and acyclovir (Black et al. 2001). | Genetic modifications of the active site represented by a tripeptide motif in thymidine kinase increases the substrate affinity of HSV-TK towards GCV and ACV (Black et al. 1996). Two promising mutant HSV-TKs have been found by large mutagenesis screenings modifying several amino acids and conducting sensitivity assays for ganciclovir and acyclovir (Black et al. 2001). | ||
− | + | <h3>SR39s</h3> | |
+ | The thymidine kinase mutant TK30 contains six modified amino acids (Black et al. 1996) created in a first screening showing enhanced affinity for gancivlocir and acyclovir, but reduced specificity for its natural substrate thymidine. | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
− | + | ||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
Line 22: | Line 23: | ||
<partinfo>BBa_K404109 parameters</partinfo> | <partinfo>BBa_K404109 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | <h3>References</h3> | ||
+ | <b>Andrei G, Balzarini J, Fiten P</b> "Characterization of herpes simplex virus type 1 thymidine kinase mutants selected under a single round of high-dose brivudin." Journal of virology. 2005;79(9):5863-9.<br /> | ||
+ | <b>Black ME, Newcomb TG, Wilson HM, Loeb La.</b> "Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy." Proceedings of the National Academy of Sciences of the United States of America. 1996;93(8):3525-9<br /> | ||
+ | <b>Black ME, Kokoris MS, Sabo P.</b> "Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing." Cancer research. 2001;61(7):3022-6 <br /> | ||
+ | <b> Ardiani a, Sanchez-Bonilla M, Black ME</b> " Fusion enzymes containing HSV-1 thymidine kinase mutants and guanylate kinase enhance prodrug sensitivity in vitro and in vivo." Cancer gene therapy. 2010;17(2):86-96<br /> |
Latest revision as of 20:11, 26 October 2010
Thymindine kinase (mutant TK30)
General Informations
Thymidine kinase (TK) (EC 2.7.1.21) is known to be involved in the salvage pathway of nucleosides to nucleotides (Andrei et al. 2005). Due to its broader spectrum for different substrates, herpes simplex virus thymidine kinase (HSV-TK) is widely used in gene therapy approaches instead of endogenous thymidine kinases (Black et al. 1996). The transgenic introduced HSV-TK monophosphrylates nucleosides or nucleoside analogs such as ganciclovir (GCV) or acyclovir (AVC) followed by further phosphorylation through cellular kinases to nucleoside triphsphosphates. Incorporation of nucleotide analogs such as ganciclovir triphosphate or acyclovir triphosphates leads to DNA chain termination (Reardon 1989) and finally results in cell death. Genetic modifications of the active site represented by a tripeptide motif in thymidine kinase increases the substrate affinity of HSV-TK towards GCV and ACV (Black et al. 1996). Two promising mutant HSV-TKs have been found by large mutagenesis screenings modifying several amino acids and conducting sensitivity assays for ganciclovir and acyclovir (Black et al. 2001).
SR39s
The thymidine kinase mutant TK30 contains six modified amino acids (Black et al. 1996) created in a first screening showing enhanced affinity for gancivlocir and acyclovir, but reduced specificity for its natural substrate thymidine. Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 68
Illegal NgoMIV site found at 973 - 1000COMPATIBLE WITH RFC[1000]
References
Andrei G, Balzarini J, Fiten P "Characterization of herpes simplex virus type 1 thymidine kinase mutants selected under a single round of high-dose brivudin." Journal of virology. 2005;79(9):5863-9.
Black ME, Newcomb TG, Wilson HM, Loeb La. "Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy." Proceedings of the National Academy of Sciences of the United States of America. 1996;93(8):3525-9
Black ME, Kokoris MS, Sabo P. "Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing." Cancer research. 2001;61(7):3022-6
Ardiani a, Sanchez-Bonilla M, Black ME " Fusion enzymes containing HSV-1 thymidine kinase mutants and guanylate kinase enhance prodrug sensitivity in vitro and in vivo." Cancer gene therapy. 2010;17(2):86-96