Difference between revisions of "Part:BBa K314999:Design"

 
(References)
 
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K314999 short</partinfo>
 
<partinfo>BBa_K314999 short</partinfo>

Latest revision as of 06:36, 3 October 2010

-- No description --


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

To increase the hydrolytic ability of CapD_CP, we made point mutations to the active site. We focused our attention on two types of mutations. First, we created point mutations that can establish hydrogen bondings to a modeled transition state of our substrate in an attempt to lower the activation energy, making hydrolysis more favorable. Second, we mutated the active site into a more open and polar area in an attempt to increase the ease with which water can enter and participate in a hydrolysis reaction.

To make these point mutations, we used a computer program named FoldIt to predict how changes in protein structure and composition will affect protein stability. FoldIt provides a 3D representation of a protein's crystal structure that can be manipulated. Manipulation functions include point mutations, insertions, deletions, repacking of side chains (rotamer optimization), and backbone movement, which FoldIt then assesses for stability. This allows the user to quickly interact with a protein and easily predict how mutations will affect a protein.


Source

To build the mutant proteins, we follow the path of the central dogma. First, we created DNA that contains our mutations. Second, we induced our transformed cells containing the desired DNA to express the mutant proteins. Lastly, we harvested the proteins by lysing open the cells and filtering out non-desired cell components.

References