Difference between revisions of "Part:BBa K5291048:Design"
Kortybones (Talk | contribs) (→Design Notes) |
Kortybones (Talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 7: | Line 7: | ||
===Design Notes=== | ===Design Notes=== | ||
− | + | Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms. | |
− | + | ||
===Source=== | ===Source=== | ||
Line 14: | Line 13: | ||
===References=== | ===References=== | ||
+ | [1]Guo, X., et al. (2023). "Structure and mechanism of the alkane-oxidizing enzyme AlkB." Nat Commun 14(1): 2180.<br> | ||
+ | [2]Yuan, M., et al. (2020). "Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell." Angewandte Chemie. 59(23): 8969-8973. |
Latest revision as of 06:29, 2 October 2024
AlkB2
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 657
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.
Source
Pseudomonas aeruginosa PAO1
References
[1]Guo, X., et al. (2023). "Structure and mechanism of the alkane-oxidizing enzyme AlkB." Nat Commun 14(1): 2180.
[2]Yuan, M., et al. (2020). "Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell." Angewandte Chemie. 59(23): 8969-8973.