Difference between revisions of "Collections/VEGFR-like"

 
(6 intermediate revisions by the same user not shown)
Line 17: Line 17:
 
   <hr>
 
   <hr>
 
   <p>
 
   <p>
     This year, the USTC iGEM team<a href="https://2024.igem.wiki/ustc/parts">lianjiewenben</a> has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like.
+
     This year, the USTC iGEM team<a href="https://2024.igem.wiki/ustc/parts"> USTC_Parts</a> has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like.
     In this year's project, we selected pBBR1MCS-2 as our plasmid backbone to construct a series of plasmids, which are used to validate the surface display system, VEGFR-like, and the masking peptides targeting VEGFR-like. And we have verified the expression of several of these plasmids in EcN.
+
 
  </p>
+
 
 +
<div style="text-align:center;">
 +
     <img src="https://static.igem.wiki/teams/5302/images/collection1.jpg"
 +
        width="60%" style="display:block; margin:auto;" alt="Jamboree Program" >
 +
    <div style="text-align:center;">
 +
        <caption>
 +
            <b>Figure 1. </b>Project Design
 +
        </caption>
 +
    </div>
 +
</div>
 +
 
 +
 
 +
In this year's project, we selected pBBR1MCS-2 as our plasmid backbone to construct a series of plasmids, which are used to validate the surface display system, VEGFR-like, and the masking peptides targeting VEGFR-like. And we have verified the expression of several of these plasmids in EcN.
 +
 
 +
 
 +
<div style="text-align:center;">
 +
    <img src="https://static.igem.wiki/teams/5302/images/collection2.png"
 +
        width="60%" style="display:block; margin:auto;" alt="Jamboree Program" >
 +
    <div style="text-align:center;">
 +
        <caption>
 +
            <b>Figure 2. </b> Plasmid Design
 +
        </caption>
 +
    </div>
 +
</div>
 +
 
 +
 
 +
</p>
 +
 
 +
<p>
 +
Here are all of our parts.Among them,BBa_K5302000-BBa_K5302007 are VEGFR-like and BBa_K5302008-BBa_K5302010 are masking peptides(VEGF-like).Others are plasmid.
 +
Please be advised that all listed genes have undergone codon optimization for our chassis strain, Escherichia coli Nissle 1917 (EcN). For those considering alternative chassis organisms, it is recommended to reassess the necessity of codon optimization.
 +
 
 +
 
 +
</p>
 
    
 
    
 
   <table>
 
   <table>
Line 106: Line 139:
 
         <td><a href=""></a>Dekun Zhou</td>
 
         <td><a href=""></a>Dekun Zhou</td>
 
         <td><a href=""></a>96</td>
 
         <td><a href=""></a>96</td>
    </tr>
 
    <tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5302011">BBa_K5302011</a></td>
 
        <td><a href=""></a>Plasmid</td>
 
        <td><a href=""></a>pBBR-<i>OmpA-mCherry</i></td>
 
        <td><a href=""></a>Jiacan Ma</td>
 
        <td><a href=""></a>6483</td>
 
    </tr>
 
    <tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5302012">BBa_K5302012</a></td>
 
        <td><a href=""></a>Plasmid</td>
 
        <td><a href=""></a>pBBR-<i>INP-mcherry</i></td>
 
        <td><a href=""></a>Jiacan Ma</td>
 
        <td><a href=""></a>6799</td>
 
    </tr>
 
 
  <tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5302013">BBa_K5302013</a></td>
 
        <td><a href=""></a>Plasmid</td>
 
        <td><a href=""></a>pBBR-<i>LppOmpA-mCherry</i></td>
 
        <td><a href=""></a>Bojun Yang</td>
 
        <td><a href=""></a>5940</td>
 
    </tr>
 
    <tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5302014">BBa_K5302014</a></td>
 
        <td><a href=""></a>Plasmid</td>
 
        <td><a href=""></a>pBBR-<i>intimin-mCherry</i></td>
 
        <td><a href=""></a>Bojun Yang</td>
 
        <td><a href=""></a>6957</td>
 
    </tr>
 
    <tr>
 
        <td><a href="https://parts.igem.org/Part:BBa_K5302015">BBa_K5302015</a></td>
 
        <td><a href=""></a>Plasmid</td>
 
        <td><a href=""></a>pBBR-<i>AIDA-mCherry</i></td>
 
        <td><a href=""></a>Bojun Yang</td>
 
        <td><a href=""></a>7269</td>
 
 
     </tr>
 
     </tr>
 
     <tr>
 
     <tr>

Latest revision as of 23:03, 1 October 2024

This collection is a user contributed collection, and is not under curation by iGEM HQ/Registry.

VEGFR-like


This year, the USTC iGEM team USTC_Parts has utilized the competitive binding of vascular endothelial growth factor (VEGF) to develop a targeted bacterial therapy for solid tumors. Our quest for the optimal VEGF-binding protein(or peptide) led us to an in-depth exploration of proteins structurally akin to the vascular endothelial growth factor receptor (VEGFR), which we have named VEGFR-like.

Jamboree Program
Figure 1. Project Design
In this year's project, we selected pBBR1MCS-2 as our plasmid backbone to construct a series of plasmids, which are used to validate the surface display system, VEGFR-like, and the masking peptides targeting VEGFR-like. And we have verified the expression of several of these plasmids in EcN.
Jamboree Program
Figure 2. Plasmid Design

Here are all of our parts.Among them,BBa_K5302000-BBa_K5302007 are VEGFR-like and BBa_K5302008-BBa_K5302010 are masking peptides(VEGF-like).Others are plasmid. Please be advised that all listed genes have undergone codon optimization for our chassis strain, Escherichia coli Nissle 1917 (EcN). For those considering alternative chassis organisms, it is recommended to reassess the necessity of codon optimization.

Name Type Description Designer Length
BBa_K5302000 Coding VEGFR1D2 Jiacan Ma 303
BBa_K5302001 Coding 8IIU Jiacan Ma 378
BBa_K5302002 Coding 8IJZ Jiacan Ma 378
BBa_K5302003 Coding ZVEGF Dekun Zhou 177
BBa_K5302004 Coding Z3C Dekun Zhou 177
BBa_K5302005 Coding miniZ Dekun Zhou 102
BBa_K5302006 Coding V114 Dekun Zhou 57
BBa_K5302007 Coding V107 Dekun Zhou 57
BBa_K5302008 Coding VEGFR-masking#18 Dekun Zhou 93
BBa_K5302009 Coding VEGFR-masking#29 Dekun Zhou 84
BBa_K5302010 Coding VGB Dekun Zhou 96
BBa_K5302016 Plasmid pBBR-OmpA-VEGFR1D2 Xinyuan Shi 6150
BBa_K5302017 Plasmid pBBR-OmpA-8IIU Xinyuan Shi 6225
BBa_K5302018 Plasmid pBBR-OmpA-8IJZ Xinyuan Shi 6225
BBa_K5302019 Plasmid pBBR-OmpA-ZVEGF Xinyuan Shi 6024
BBa_K5302020 Plasmid pBBR-OmpA-Z3C Xinyuan Shi 6024
BBa_K5302021 Plasmid pBBR-OmpA-miniZ Xinyuan Shi 5949
BBa_K5302022 Plasmid pBBR-OmpA-V114 Xinyuan Shi 5903
BBa_K5302023 Plasmid pBBR-OmpA-V107 Xinyuan Shi 5903
BBa_K5302024 Plasmid pBBR-INP-VEGFR1D2 Bojun Yang 6466
BBa_K5302025 Plasmid pBBR-INP-8IIU Bojun Yang 6541
BBa_K5302026 Plasmid pBBR-INP-8IJZ Bojun Yang 6541
BBa_K5302027 Plasmid pBBR-INP-ZVEGF Bojun Yang 6340
BBa_K5302028 Plasmid pBBR-INP-Z3C Bojun Yang 6340
BBa_K5302029 Plasmid pBBR-INP-miniZ Bojun Yang 6265
BBa_K5302030 Plasmid pBBR-INP-V114 Bojun Yang 6220
BBa_K5302031 Plasmid pBBR-INP-V107 Bojun Yang 6220
BBa_K5302032 Plasmid pBBR-OmpA-VEGFR1D2-l1masking#18 Dekun Zhou 6144
BBa_K5302033 Plasmid pBBR-OmpA-VEGFR1D2-l2masking#18 Dekun Zhou 6144
BBa_K5302034 Plasmid pBBR-OmpA-VEGFR1D2-l1masking#29 Dekun Zhou 6135
BBa_K5302035 Plasmid pBBR-OmpA-VEGFR1D2-l2masking#29 Dekun Zhou 6135
BBa_K5302036 Plasmid pBBR-OmpA-l1VGB Dekun Zhou 6147
BBa_K5302037 Plasmid pBBR-OmpA-l2VGB Dekun Zhou 6147
BBa_K5302038 Plasmid pBBR-INP-VEGFR1D2-l1masking#18 Dekun Zhou 6496
BBa_K5302039 Plasmid pBBR-INP-VEGFR1D2-l2masking#18 Dekun Zhou 6496
BBa_K5302040 Plasmid pBBR-INP-VEGFR1D2-l1masking#29 Dekun Zhou 6487
BBa_K5302041 Plasmid pBBR-INP-VEGFR1D2-l2masking#29 Dekun Zhou 6487
BBa_K5302042 Plasmid pBBR-INP-l1VGB Dekun Zhou 6499
BBa_K5302043 Plasmid pBBR-INP-l2VGB Dekun Zhou 6499

Reference


[1]Ivan Guryanov*, Viktor Korzhikov-Vlakh, Madhushree Bhattacharya, Barbara Biondi, Giulia Masiero, Fernando Formaggio, Tatiana Tennikova, Arto Urtt. Conformationally Constrained Peptides with High Affinity to the Vascular Endothelial Growth Factor.Journal of Medicinal Chemistry. Vol 64/Issue 15.July 16, 2021
[2]Pan B, Li B, Russell SJ, Tom JY, Cochran AG, Fairbrother WJ. Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor. J Mol Biol. 2002 Feb 22;316(3):769-87. doi: 10.1006/jmbi.2001.5370
[3]Checco JW, Kreitler DF, Thomas NC, Belair DG, Rettko NJ, Murphy WL, Forest KT, Gellman SH. Targeting diverse protein-protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4552-7. doi: 10.1073/pnas.1420380112
[4]Rossella Di Stasi, Donatella Diana, Domenica Capasso, Rosanna Palumbo, Alessandra Romanelli, Carlo Pedone, Roberto Fattorusso, Luca D. D'Andrea. VEGFR1D2 in drug discovery: Expression and molecular characterization.19 November 2010
[5]Anna Fedorova, Kerry Zobel, Herman S. Gill, Annie Ogasawara, Judith E. Flores, Jeff N. Tinianow, Alexander N. Vanderbilt, Ping Wu, Y. Gloria Meng, Simon-P. Williams, Christian Wiesmann, Jeremy Murray, Jan Marik, Kurt Deshayes. The Development of Peptide-Based Tools for the Analysis of Angiogenesis. Chemistry & Biology. Volume 18, Issue 7. 2011. Pages 839-845. ISSN 1074-5521
[6]Balsera B, Bonache MÁ, Reille-Seroussi M, Gagey-Eilstein N, Vidal M, González-Muñiz R, Pérez de Vega MJ. Disrupting VEGF-VEGFR1 Interaction: De Novo Designed Linear Helical Peptides to Mimic the VEGF13-25 Fragment. Molecules. 2017 Oct 28;22(11):1846
[7]Lei Wang,Lingyu Zhou,Marie Reille-Seroussi,Nathalie Gagey-Eilstein,Sylvain Broussy, Tianyu Zhang,Lili Ji,Michel Vidal*,Wang-Qing Liu.Identification of Peptidic Antagonists of Vascular Endothelial Growth Factor Receptor 1 by Scanning the Binding Epitopes of Its Ligands.July7.2017
[8]Sonia Nicchi1,2, Maria Giuliani1 , Fabiola Giusti1 , Laura Pancotto1 , Domenico Maione1 , Isabel Delany1 , Cesira L. Galeotti1 and Cecilia Brettoni1*.Decorating the surface of Escherichia coli with bacterial lipoproteins: a comparative analysis of diferent display systems.2021