Difference between revisions of "Part:BBa K5034220"

(References)
 
(4 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
===Basic Description===
 
===Basic Description===
This composite part includes the <i>PPK1</i> gene which is initially from <i>Citrobacter freundii</i> and we performed codon optimization on, is expressed in the pBBR1MCS-terminator plasmid with the BBa-B0031 RBS, which is a weaker one compared to others. This composite part is designed to facilitate the reversible conversion between inorganic polyphosphate (PolyP) and inorganic phosphate (Pi). The PPK1 enzyme is known for its ability to synthesize PolyP from ATP and to degrade PolyP back to Pi, with a preference for the synthetic reaction, making it a versatile tool for managing phosphate metabolism in engineered systems.
+
This composite part includes the <i>PPK1</i> gene which is initially from <i>Citrobacter freundii</i> and we performed codon optimization on, is expressed in the pBBR1MCS-terminator plasmid with the BBa-B0031 RBS, which is a weaker one compared to others. This composite part is designed to facilitate the reversible conversion between inorganic polyphosphate (PolyP) and inorganic phosphate (Pi). The PPK1 enzyme is known for its ability to synthesize PolyP from ATP and Pi and to degrade PolyP back to Pi, with a preference for the synthetic reaction, making it a versatile tool for managing phosphate metabolism in engineered systems.
 
<html>
 
<html>
 
<body>
 
<body>
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/mechanism-of-ppk1.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/mechanism-of-ppk1.png" style="width: 500px; height: auto;">
 +
<p>Figure 1: Basic function of PPK1</p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 1: Basic function of PPK1
 
  
 
===Construct features===
 
===Construct features===
Line 20: Line 20:
  
  
Plasmid Backbone: pBBR1MCS-terminator plasmid
+
* Plasmid Backbone: pBBR1MCS-terminator plasmid
  
Promoter: Constitutive promoter for continuous expression. We use Lac promoter in our experiment.
+
* Promoter: Constitutive promoter for continuous expression. We use Lac promoter in our experiment which is in the plasmid backbone. Since our sequence does not encode the regulatory gene ''lacI'' for the repressor protein, the promoter we introduced is a constitutive promoter. This allows the subsequent genes to be continuously expressed.
  
RBS: Ribosome binding site for efficient translation. We use BBa-B0031 here.
+
* RBS: Ribosome binding site for efficient translation. We use BBa-B0031 here.
  
PPK1 Coding Sequence: Encodes the polyphosphate kinase 1 enzyme.
+
* PPK1 Coding Sequence: Encodes the polyphosphate kinase 1 enzyme.
  
Terminator: Efficient transcription terminator to ensure proper mRNA processing. We use rrnB T1 terminator and T7Te terminator in our experiment.
+
* Terminator: Efficient transcription terminator to ensure proper mRNA processing. We use rrnB T1 terminator and T7Te terminator in our experiment which are in the plasmid backbone.
  
 
<html>
 
<html>
Line 34: Line 34:
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/results/new/basic-structure-of-spk3.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/results/new/basic-structure-of-spk3.png" style="width: 500px; height: auto;">
 +
<p>Figure 2: Basic construction of <i>PPK1</i> with BBa-B0031 RBS plasmid</p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 2: Basic construction of <i>PPK1</i> with BBa-B0031 RBS plasmid
 
 
<html>
 
<html>
 
<body>
 
<body>
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/pbbr1mcs-terminator-31-ppk1.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/pbbr1mcs-terminator-31-ppk1.png" style="width: 500px; height: auto;">
 +
<p>Figure 3: Construction of <i>PPK1</i> with BBa-B0031 RBS plasmid</p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 3: Construction of <i>PPK1</i> with BBa-B0031 RBS plasmid
 
  
  
We transformed the plasmids into wild-type <i>S. oneidensis.</i>, expressed it, and performed colony PCR. The results showed that <i>PPK1</i> was successfully introduced into <i>Shewanella</i> for replication.
+
We transformed the plasmids into wild-type <i>S. oneidensis.</i>, expressed it, and performed colony PCR. The results showed that <i>PPK1</i> was successfully introduced into <i>S. oneidensis.</i> for replication.
 
<html>
 
<html>
 
<body>
 
<body>
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig9.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig9.png" style="width: 500px; height: auto;">
 +
<p>Figure 4: Colony PCR indicating plasmid replication in <i>S. oneidensis.</i></p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 4: Colony PCR indicating plasmid replication in <i>S. oneidensis.</i>
 
  
  
Line 64: Line 64:
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/gel-ppk1.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/gel-ppk1.png" style="width: 500px; height: auto;">
 +
<p>Figure 5: Agarose gel electrophoresis indicating we got the target gene with the corresponding RBS</p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 5: Agarose gel electrophoresis indicating we got the target gene with the corresponding RBS
 
  
  
Line 75: Line 75:
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig10.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig10.png" style="width: 500px; height: auto;">
 +
<p>Figure 6: SDS-PAGE results showing that the BBa-B0031 one’s protein expression is the minimum, corresponding to the strength of RBS.</p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 6: SDS-PAGE results showing that the BBa-B0031 one’s protein expression is the minimum, corresponding to the strength of RBS.
 
  
  
Line 93: Line 93:
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig12.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig12.png" style="width: 500px; height: auto;">
 +
<p>Figure 7: Electricity production capacity of <i>S. oneidensis.</i> after the introduction of <i>PPK1</i> with different RBS</p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 7: Electricity production capacity of <i>S. oneidensis.</i> with the introduction of <i>PPK1</i> with different RBS
 
 
<html>
 
<html>
 
<body>
 
<body>
 
     <div style="text-align: center;">
 
     <div style="text-align: center;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig11.png" style="width: 500px; height: auto;">
 
         <img src="https://static.igem.wiki/teams/5034/engineering/fig11.png" style="width: 500px; height: auto;">
 +
<p>Figure 8: Phosphorus accumulation capacity of <i>S. oneidensis.</i> after the introduction of <i>PPK1</i> with different RBS</p>
 
     </div>
 
     </div>
 
</body>
 
</body>
 
</html>
 
</html>
Figure 8: Phosphorus accumulation capacity of <i>S. oneidensis.</i> with the introduction of <i>PPK1</i> with different RBS
+
 
  
 
Details of all experiments can be found in the <html><body><a href="https://2024.igem.wiki/nanjing-china/experiments">Experiments section on the Wiki.</a></body></html>
 
Details of all experiments can be found in the <html><body><a href="https://2024.igem.wiki/nanjing-china/experiments">Experiments section on the Wiki.</a></body></html>
Line 121: Line 122:
  
 
===References===
 
===References===
1.Itoh, H., & Shiba, T. (2004). Polyphosphate synthetic activity of polyphosphate:AMP phosphotransferase in Acinetobacter johnsonii 210A. Journal of Bacteriology, 186(15), 5178-5181.
+
<i>Wang X , Wang X , Hui K , et al. Highly Effective Polyphosphate Synthesis, Phosphate Removal and Concentration Using Engineered Environmental Bacteria Based on a Simple Solo Medium-copy Plasmid Strategy[J]. Environmental Science & Technology, 2017:acs.est.7b04532.</i>

Latest revision as of 08:22, 2 October 2024


Pi <-> Poly P

Basic Description

This composite part includes the PPK1 gene which is initially from Citrobacter freundii and we performed codon optimization on, is expressed in the pBBR1MCS-terminator plasmid with the BBa-B0031 RBS, which is a weaker one compared to others. This composite part is designed to facilitate the reversible conversion between inorganic polyphosphate (PolyP) and inorganic phosphate (Pi). The PPK1 enzyme is known for its ability to synthesize PolyP from ATP and Pi and to degrade PolyP back to Pi, with a preference for the synthetic reaction, making it a versatile tool for managing phosphate metabolism in engineered systems.

Figure 1: Basic function of PPK1

Construct features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal prefix found in sequence at 4981
    Illegal suffix found in sequence at 1
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 4981
    Illegal SpeI site found at 2
    Illegal PstI site found at 16
    Illegal NotI site found at 9
    Illegal NotI site found at 2834
    Illegal NotI site found at 4987
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 4981
    Illegal BglII site found at 3580
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal prefix found in sequence at 4981
    Illegal suffix found in sequence at 2
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal prefix found in sequence at 4981
    Illegal XbaI site found at 4996
    Illegal SpeI site found at 2
    Illegal PstI site found at 16
    Illegal NgoMIV site found at 562
    Illegal NgoMIV site found at 4244
    Illegal NgoMIV site found at 4527
    Illegal AgeI site found at 402
  • 1000
    COMPATIBLE WITH RFC[1000]


  • Plasmid Backbone: pBBR1MCS-terminator plasmid
  • Promoter: Constitutive promoter for continuous expression. We use Lac promoter in our experiment which is in the plasmid backbone. Since our sequence does not encode the regulatory gene lacI for the repressor protein, the promoter we introduced is a constitutive promoter. This allows the subsequent genes to be continuously expressed.
  • RBS: Ribosome binding site for efficient translation. We use BBa-B0031 here.
  • PPK1 Coding Sequence: Encodes the polyphosphate kinase 1 enzyme.
  • Terminator: Efficient transcription terminator to ensure proper mRNA processing. We use rrnB T1 terminator and T7Te terminator in our experiment which are in the plasmid backbone.

Figure 2: Basic construction of PPK1 with BBa-B0031 RBS plasmid

Figure 3: Construction of PPK1 with BBa-B0031 RBS plasmid


We transformed the plasmids into wild-type S. oneidensis., expressed it, and performed colony PCR. The results showed that PPK1 was successfully introduced into S. oneidensis. for replication.

Figure 4: Colony PCR indicating plasmid replication in S. oneidensis.


DNA agarose gel electrophoresis results showed that we obtained the plasmid with BBa-B0031 RBS, which is approximately 2.1 kb in size.

Figure 5: Agarose gel electrophoresis indicating we got the target gene with the corresponding RBS


We performed protein extraction for SDS-PAGE. SDS-PAGE results showed that protein expression of the plasmid with BBa-B0031 RBS is the minimum, corresponding to the strength of RBS.

Figure 6: SDS-PAGE results showing that the BBa-B0031 one’s protein expression is the minimum, corresponding to the strength of RBS.


Origin (Organism)

The PPK1 gene was sourced from Citrobacter freundii. The pBBR1MCS-terminator plasmid backbone is a standard vector used for gene expression in synthetic biology applications.

Experimental Characterization and results

Alteration of protein expression intensity can regulate the metabolic networks, so we focused on RBS with varying translation strengths to facilitate the regulation of PPK1 concentration in S. oneidensis. to develop the best ability to produce electricity and polymerize phosphorus.

We conducted Pi content detection to determine Pi concentration and half-cell experiment to measure the electricity production ability, we found SPK3 with RBS BBa-B0031 has the worst capacity to polymerize phosphorus but a greatest electroproduction capability.

Figure 7: Electricity production capacity of S. oneidensis. after the introduction of PPK1 with different RBS

Figure 8: Phosphorus accumulation capacity of S. oneidensis. after the introduction of PPK1 with different RBS


Details of all experiments can be found in the Experiments section on the Wiki.

Chassis and genetic

Chassis:Shewanella onediensis MR-1

The gene can be expressed and function properly in S. oneidensis..

Potential applications

The PPK1 gene (polyphosphate kinase 1) has potential applications in:

Industrial Microbial Engineering: Enhances the production of biofuels, amino acids, or antibiotics by boosting polyphosphate synthesis in microorganisms.

Environmental Bioremediation: Assists in the accumulation of heavy metals or radioactive substances for pollution control.

References

Wang X , Wang X , Hui K , et al. Highly Effective Polyphosphate Synthesis, Phosphate Removal and Concentration Using Engineered Environmental Bacteria Based on a Simple Solo Medium-copy Plasmid Strategy[J]. Environmental Science & Technology, 2017:acs.est.7b04532.