Difference between revisions of "Part:BBa K5237022"

 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
 
<!--################################-->
 
<!--################################-->
 
<!--Provided by the iGEM registry main page when editing a part, DO NOT copy information from template-->
 
<!--Provided by the iGEM registry main page when editing a part, DO NOT copy information from template-->
Line 5: Line 4:
 
<partinfo>BBa_K5237022</partinfo>
 
<partinfo>BBa_K5237022</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<!--Add changes below--->
 
<!--Add changes below--->
 
<html>
 
<html>
Line 32: Line 30:
 
     padding: 5px;
 
     padding: 5px;
 
   }
 
   }
 +
 
   .thumbcaption {
 
   .thumbcaption {
      text-align:justify !important;
+
    text-align: justify !important;
    }
+
  }
  
  
   a[href ^="https://"],.link-https {
+
   a[href ^="https://"],
 +
  .link-https {
 
     background: none !important;
 
     background: none !important;
     padding-right:0px !important;
+
     padding-right: 0px !important;
}
+
  }
 
+
 
</style>
 
</style>
 +
 
<body>
 
<body>
    <!-- Part summary -->
+
  <!-- Part summary -->
    <section>
+
  <section>
      <h1>mCherry Expression Cassette: UAS, Minimal Promoter, mCherry</h1>
+
    <h1>mCherry Expression Cassette: UAS, Minimal Promoter, mCherry</h1>
      <p>This composite part features the 5x Gal4 upstream activating sequence (UAS) followed by a minimal promoter (<a href="https://parts.igem.org/Part:BBa_K3281012" target="_blank">BBa_K3281012</a>) to regulate the expression of mCherry (<a href="https://parts.igem.org/Part:BBa_J06504" target="_blank">BBa_J06504</a>). We used this part for a fluorescence readout assay to investigate cathepsin B cleavage of different peptide linkers <i>in vivo</i>: The fusion protein NLS-Gal4-Linker-VP64 (<a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a>) was overexpressed in HEK293T cells. Binding of Gal4 to the 5x Gal4 UAS induces overexpression of mCherry through VP64 <i>trans</i>-activation, resulting in bright red fluorescence, which is useful for visualizing gene expression. Separation of Gal4 and VP64 through cleavage of the linker would consequently reduce mCherry expression.</p>
+
    <p>This composite part features the 5x Gal4 upstream activating sequence (UAS) followed by a minimal promoter (<a
      <p>&nbsp;</p>
+
        href="https://parts.igem.org/Part:BBa_K3281012" target="_blank">BBa_K3281012</a>) to regulate the expression of
      
+
      mCherry (<a href="https://parts.igem.org/Part:BBa_J06504" target="_blank">BBa_J06504</a>). We used this part for a
  <div id="toc" class="toc">
+
      fluorescence readout assay to investigate cathepsin B cleavage of different peptide linkers <i>in vivo</i>: The
    <div id="toctitle">
+
      fusion protein NLS-Gal4-Linker-VP64 (<a href="https://parts.igem.org/Part:BBa_K5237020"
      <h1>Contents</h1>
+
        target="_blank">BBa_K5237020</a>) was overexpressed in HEK293T cells. Binding of Gal4 to the 5x Gal4 UAS induces
 +
      overexpression of mCherry through VP64 <i>trans</i>-activation, resulting in bright red fluorescence, which is
 +
      useful for visualizing gene expression. Separation of Gal4 and VP64 through cleavage of the linker would
 +
      consequently reduce mCherry expression.</p>
 +
    </section>
 +
    <p> </p>
 +
     <div class="toc" id="toc">
 +
      <div id="toctitle">
 +
        <h1>Contents</h1>
 +
      </div>
 +
      <ul>
 +
        <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 +
              Overview</span></a>
 +
        </li>
 +
        <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage
 +
              and
 +
              Biology</span></a>
 +
        </li>
 +
        <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span
 +
              class="toctext">Assembly
 +
              and Part Evolution</span></a>
 +
        </li>
 +
        <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 +
              class="toctext">Results</span></a>
 +
        </li>
 +
        <li class="toclevel-1 tocsection-10"><a href="#5"><span class="tocnumber">5</span> <span
 +
              class="toctext">References</span></a>
 +
        </li>
 +
      </ul>
 
     </div>
 
     </div>
    <ul>
 
      <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 
            Overview</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
 
            Biology</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
 
            and Part Evolution</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
            class="toctext">Results</span></a>
 
      </li>
 
      <li class="toclevel-1 tocsection-10"><a href="#5"><span class="tocnumber">5</span> <span
 
            class="toctext">References</span></a>
 
      </li>
 
    </ul>
 
  </div>
 
</section>
 
  
 
   <section>
 
   <section>
<p><br><br></p>
+
    <p><br /><br /></p>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
 
     <div class="thumb" style="margin-top:10px;"></div>
 
     <div class="thumb" style="margin-top:10px;"></div>
      <div class="thumbinner" style="width:550px"><img alt="" src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" style="width:99%;" class="thumbimage">
+
    <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
        <div class="thumbcaption">
+
        src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
          <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
+
        style="width:99%;" />
        </div>
+
      <div class="thumbcaption">
 +
        <i><b>Figure 1: How our Part Collection Can be Used to Engineer New Staples</b></i>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
   
 
 
 
     <p>
 
     <p>
       <br>
+
       <br />
       Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene regulation,
+
       While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
       cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
+
        spatial organization</b> of DNA is well-known to be an important layer of information encoding in
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
+
      particular in eukaryotes, playing a crucial role in
       toolbox based on various DNA-binding proteins to address this issue.
+
      gene regulation and hence
 +
       cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
 +
      genomic spatial
 +
      architecture are limited, hampering the exploration of
 +
       3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
 +
       <b>powerful
 +
        molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
 +
      various DNA-binding proteins.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
       re-programming
+
       <b>re-programming
      of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic
+
        of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables
       interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation.
+
      researchers to recreate naturally occurring alterations of 3D genomic
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
+
       interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
+
      artificial gene regulation and cell function control.
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
+
       Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic
 +
      loci into
 +
      spatial proximity.
 +
      To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
 +
      connected either at
 +
      the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are
 +
      referred to as protein- or Cas staples, respectively. Beyond its
 +
      versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
 +
      support the engineering, optimization, and
 +
       testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a
 +
       design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational
 +
        modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
 +
      parts.
 
     </p>
 
     </p>
 
+
     <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding
     <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b>
+
        proteins</b>
 
       include our
 
       include our
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
+
       finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
       new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
+
      "half staples" that can be combined by scientists to compose entirely
       and can be further engineered to create alternative, simpler and more compact staples. <br>
+
       new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
+
      and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
       consist of
+
      successful stapling
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
+
       and can be further engineered to create alternative, simpler, and more compact staples. <br />
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our
+
       <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
       interkingdom conjugation system. <br>
+
      functionality of our Cas and
       <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom readout
+
      Basic staples. These
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
+
       consist of staples dependent on
 +
       cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
 +
      dynamic stapling <i>in vivo</i>.
 +
       We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
 +
      target cells, including mammalian cells,
 +
      with our new
 +
       interkingdom conjugation system. <br />
 +
       <b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
 +
        readout
 +
         systems</b>. These include components of our established FRET-based proximity assay system, enabling
 +
      users to
 
       confirm
 
       confirm
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
+
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
       readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking in mammalian cells.
+
       luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
 +
      hijacking events
 +
      in mammalian cells.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark style="background-color: #FFD700; color: black;">The highlighted parts showed
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
      exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in the
+
        style="background-color: #FFD700; color: black;">The highlighted parts showed
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
+
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
       own custom Cas staples, enabling further optimization and innovation.<br>
+
      parts in
 +
      the
 +
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
 +
      their
 +
       own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
 +
      engineering.<br />
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       <font size="4"><b>Our part collection includes:</b></font><br>
+
       <font size="4"><b>Our part collection includes:</b></font><br />
 
     </p>
 
     </p>
 
 
     <table style="width: 90%; padding-right:10px;">
 
     <table style="width: 90%; padding-right:10px;">
       <td colspan="3" align="left"><b>DNA-binding proteins: </b>
+
       <td align="left" colspan="3"><b>DNA-Binding Proteins: </b>
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
+
         Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i>
        easy assembly.</td>
+
      </td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
           <td>fgRNA Entry vector MbCas12a-SpCas9</td>
+
           <td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td>
           <td>Entryvector for simple fgRNA cloning via SapI</td>
+
           <td>Entry vector for simple fgRNA cloning via SapI</td>
 
         </tr>
 
         </tr>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
           <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td>
+
           <td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td>
           <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple</td>
+
           <td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
 +
          </td>
 
         </tr>
 
         </tr>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
           <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
+
           <td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
           <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple
+
           <td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
Line 154: Line 197:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
           <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
 
           <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close proximity
+
           <td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into
 +
            close
 +
            proximity
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
           <td>Staple subunit: Oct1-DBD</td>
+
           <td>Staple Subunit: Oct1-DBD</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
           <td>Staple subunit: TetR</td>
+
           <td>Staple Subunit: TetR</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
           <td>Simple staple: TetR-Oct1</td>
+
           <td>Simple Staple: TetR-Oct1</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
           <td>Staple subunit: GCN4</td>
+
           <td>Staple Subunit: GCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
           <td>Staple subunit: rGCN4</td>
+
           <td>Staple Subunit: rGCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
           <td>Mini staple: bGCN4</td>
+
           <td>Mini Staple: bGCN4</td>
 
           <td>
 
           <td>
 
             Assembled staple with minimal size that can be further engineered</td>
 
             Assembled staple with minimal size that can be further engineered</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Functional elements: </b>
+
       <td align="left" colspan="3"><b>Functional Elements: </b>
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
 +
        optimization
 
         for custom applications</td>
 
         for custom applications</td>
 
       <tbody>
 
       <tbody>
Line 198: Line 244:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
           <td>Cathepsin B-cleavable Linker: GFLG</td>
 
           <td>Cathepsin B-cleavable Linker: GFLG</td>
           <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive
+
           <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
 +
            responsive
 
             staples</td>
 
             staples</td>
 
         </tr>
 
         </tr>
Line 204: Line 251:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td>Cathepsin B Expression Cassette</td>
 
           <td>Cathepsin B Expression Cassette</td>
           <td>Expression Cassette for the overexpression of cathepsin B</td>
+
           <td>Expression cassette for the overexpression of cathepsin B</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td>Caged NpuN Intein</td>
 
           <td>Caged NpuN Intein</td>
           <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. Can be used to create functionalized staples
+
           <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
             units</td>
+
            activation, which can be used to create functionalized staple
 +
             subunits</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td>Caged NpuC Intein</td>
 
           <td>Caged NpuC Intein</td>
           <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. Can be used to create functionalized staples
+
           <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
             units</td>
+
            activation, which can be used to create functionalized staple
 +
             subunits</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
           <td>fgRNA processing casette</td>
+
           <td>Fusion Guide RNA Processing Casette</td>
           <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming</td>
+
           <td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for
 +
            multiplexed 3D
 +
            genome reprogramming</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
 
           <td>Intimin anti-EGFR Nanobody</td>
 
           <td>Intimin anti-EGFR Nanobody</td>
           <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
+
           <td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for
 +
            large
 
             constructs</td>
 
             constructs</td>
 +
        </tr>
 +
        <tr>
 +
          <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
 +
          <td>IncP Origin of Transfer</td>
 +
          <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
 +
            means of
 +
            delivery</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Readout Systems: </b>
+
       <td align="left" colspan="3"><b>Readout Systems: </b>
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
+
         FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
        enabling swift testing and easy development for new systems</td>
+
        mammalian cells
 +
      </td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
           <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA
+
           <td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to
 +
            visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 243: Line 305:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
 
           <td>FRET-Acceptor: TetR-mScarlet-I</td>
 
           <td>FRET-Acceptor: TetR-mScarlet-I</td>
           <td>Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA
+
           <td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 255: Line 318:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
 
           <td>TetR Binding Cassette</td>
 
           <td>TetR Binding Cassette</td>
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
 +
            FRET
 
             proximity assay</td>
 
             proximity assay</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
+
         <td>Cathepsin B-Cleavable <i>Trans</i>-Activator: NLS-Gal4-GFLG-VP64</td>
         <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker</td>
+
         <td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
         </tr>
+
         </td>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td>NLS-Gal4-VP64</td>
 
           <td>NLS-Gal4-VP64</td>
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td>
+
           <td><i>Trans</i>-activating enhancer, that can be used to simulate enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
+
         <td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td>
         <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td>
+
         <td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
           <td>Oct1 - 5x UAS binding casette</td>
+
           <td>Oct1 - 5x UAS Binding Casette</td>
 
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
           <td>TRE-minimal promoter- firefly luciferase</td>
+
           <td>TRE-minimal Promoter- Firefly Luciferase</td>
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
+
           <td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence
 +
            readout for
 
             simulated enhancer hijacking</td>
 
             simulated enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
 
     </table>
 
     </table>
    </p>
 
 
   </section>
 
   </section>
 
 
   <section id="1">
 
   <section id="1">
 
     <h1>1. Sequence Overview</h1>
 
     <h1>1. Sequence Overview</h1>
Line 293: Line 355:
  
 
</html>
 
</html>
 
 
<!--################################-->
 
<!--################################-->
 
<!--The followig lines need to be adjusted for each part (exchange hashes for part number)-->
 
<!--The followig lines need to be adjusted for each part (exchange hashes for part number)-->
<span class='h3bb'>Sequence and Features</span>
+
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237022 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237022 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
<!--################################-->
 +
<html>
  
<html> 
 
 
 
 
 
<body>
 
<body>
 
   <section id="2">
 
   <section id="2">
 
     <h1>2. Usage and Biology</h1>
 
     <h1>2. Usage and Biology</h1>
     <p>This composite part utilizes the 5x Gal4 Upstream Activating Sequence (UAS) to regulate mCherry expression. When Gal4 is present in the cell, its DNA-binding domain (DBD) binds to the UAS, promoting overexpression of mCherry via VP64 (Muench <i>et al.</i>, 2023). This results in enhanced production of the mCherry protein, which emits bright red fluorescence, making it an effective reporter for gene expression. This construct enriches our part collection, as it can be used in fluorescence readout assays, such as the one depicted in <b>Figure 2</b>, where it reports the activity of our cathepsin B-cleavable linker (<a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a>).</p>
+
     <p>This composite part utilizes the 5x Gal4 Upstream Activating Sequence (UAS) to regulate mCherry expression. When
 
+
      Gal4 is present in the cell, its DNA-binding domain (DBD) binds to the UAS, promoting overexpression of mCherry
 +
      via VP64 (Muench <i>et al.</i>, 2023). This results in enhanced production of the mCherry protein, which emits
 +
      bright red fluorescence, making it an effective reporter for gene expression. This construct enriches our part
 +
      collection, as it can be used in fluorescence readout assays, such as the one depicted in <b>figure 2</b>, where
 +
      it reports the activity of our cathepsin B-cleavable linker (<a href="https://parts.igem.org/Part:BBa_K5237020"
 +
        target="_blank">BBa_K5237020</a>).</p>
 
     <div class="thumb">
 
     <div class="thumb">
       <div class="thumbinner" style="width:450px;"><img alt="Cathepsin B Fluorescence Readout Assay" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-gal4-vp64-mechanism.svg" width="450"
+
       <div class="thumbinner" style="width:450px;"><img alt="Cathepsin B Fluorescence Readout Assay" class="thumbimage"
            class="thumbimage">
+
          src="https://static.igem.wiki/teams/5237/wetlab-results/catb-gal4-vp64-mechanism.svg" width="450" />
 
         <div class="thumbcaption">
 
         <div class="thumbcaption">
           <i><b>Figure 2: Schematic Illustration of the Cathepsin B Fluorescence Readout Assay.</b></i> The DNA-binding domain (DBD) of Gal4 is conjugated to the transactivator domain VP64 via a cathepsin B-cleavable peptide linker. Binding of the Gal4-DBD to the upstream activating sequence (UAS) in proximity to the mCherry gene induces mCherry overexpression via VP64. Cathepsin B cleavage of the linker separates Gal4-DBD and VP64 and consequently reduces mCherry expression.
+
           <i><b>Figure 2: Schematic Illustration of the Cathepsin B Fluorescence Readout Assay.</b> The DNA-binding
 +
          domain (DBD) of Gal4 is conjugated to the transactivator domain VP64 via a cathepsin B-cleavable peptide
 +
          linker. Binding of the Gal4-DBD to the upstream activating sequence (UAS) in proximity to the mCherry gene
 +
          induces mCherry overexpression via VP64. Cathepsin B cleavage of the linker separates Gal4-DBD and VP64 and
 +
          consequently reduces mCherry expression.</i>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 
 
   </section>
 
   </section>
 
   <section id="3">
 
   <section id="3">
 
     <h1>3. Assembly and Part Evolution</h1>
 
     <h1>3. Assembly and Part Evolution</h1>
     <p>The plasmid was sourced from a plasmid bank, with the mCherry coding sequence located downstream of the 5x Gal4 UAS promoter. No additional modifications were made to the construct, ensuring standard functionality for use in synthetic biology applications.</p>
+
     <p>The plasmid was sourced from a plasmid bank, with the mCherry coding sequence located downstream of the 5x Gal4
 
+
      UAS promoter. No additional modifications were made to the construct, ensuring standard functionality for use in
 +
      synthetic biology applications.</p>
 
   </section>
 
   </section>
 
   <section id="4">
 
   <section id="4">
 
     <h1>4. Results</h1>
 
     <h1>4. Results</h1>
     <p>Fluorescence readout assays were performed in HEK293T cells transfected with plasmids encoding eGFP, this composite part, and a Gal4-VP64 construct (<a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a>). The null control was not transfected with a plasmid encoding the Gal4-VP64 construct. As can be seen in <b>Figures 3 and 4</b>, there was a large increase in red fluorescence intensity compared to the null control, confirming successful expression of mCherry under the control of the UAS promoter. This demonstrates the part’s effectiveness as a tool for monitoring Gal4-mediated gene expression in mammalian cells.</p>
+
     <p>Fluorescence readout assays were performed in HEK293T cells transfected with plasmids encoding eGFP, this
 
+
      composite part, and a Gal4-VP64 construct (<a href="https://parts.igem.org/Part:BBa_K5237020"
 +
        target="_blank">BBa_K5237020</a>). The null control was not transfected with a plasmid encoding the Gal4-VP64
 +
      construct. As can be seen in <b>figures 3 and 4</b>, there was a large increase in red fluorescence intensity
 +
      compared to the null control, confirming successful expression of mCherry under the control of the UAS promoter.
 +
      This demonstrates the part’s effectiveness as a tool for monitoring Gal4-mediated gene expression in mammalian
 +
      cells.</p>
 
     <div class="thumb">
 
     <div class="thumb">
       <div class="thumbinner" style="width:450px;"><img alt="Micrographs" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-fluorescence-microscope-cropped.png" width="450"
+
       <div class="thumbinner" style="width:450px;"><img alt="Micrographs" class="thumbimage"
            class="thumbimage">
+
          src="https://static.igem.wiki/teams/5237/wetlab-results/catb-fluorescence-microscope-cropped.png"
 +
          width="450" />
 
         <div class="thumbcaption">
 
         <div class="thumbcaption">
           <i><b>Figure 3: Micrographs of HEK293T Cells in Two Conditions.</b></i> Pictures were taken with a fluorescence microscope 48 hours after transfection. An overlay of brightfield, eGFP and mCherry is shown. Both samples were transfected with plasmids encoding eGFP and the composite part. In the null control (left), no plasmid encoding the Gal4-VP64 construct was transfected, while in the negative control (right), the Gal4-VP64 construct was included. The test sample is not displayed here, as it is irrelevant to this specific comparison.
+
           <i><b>Figure 3: Micrographs of HEK293T Cells in Two Conditions.</b> Pictures were taken with a
 +
          fluorescence microscope 48 hours after transfection. An overlay of brightfield, eGFP and mCherry is shown.
 +
          Both samples were transfected with plasmids encoding eGFP and the composite part. In the null control (left),
 +
          no plasmid encoding the Gal4-VP64 construct was transfected, while in the negative control (right), the
 +
          Gal4-VP64 construct was included. The test sample is not displayed here, as it is irrelevant to this specific
 +
          comparison.</i>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 
+
    <div class="thumb">
<div class="thumb">
+
       <div class="thumbinner" style="width:450px;"><img alt="Fluorescence Readout Assay" class="thumbimage"
       <div class="thumbinner" style="width:450px;"><img alt="Fluorescence Readout Assay" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-results/catb-fluorescence-readout-null-negative-w.svg" width="450"
+
          src="https://static.igem.wiki/teams/5237/wetlab-results/catb-results/catb-fluorescence-readout-null-negative-w.svg"
            class="thumbimage">
+
          width="450" />
 
         <div class="thumbcaption">
 
         <div class="thumbcaption">
           <i><b>Figure 4: Fluorescence Readout After 48 Hours for Two Conditions of GFLG Linker.</b></i> The fluorescence intensity for mCherry was measured for the GFLG linker and normalized against a baseline eGFP fluorescence intensity. Both samples were transfected with plasmids encoding eGFP and the composite part. In the null control (left), no plasmid encoding the Gal4-VP64 construct was transfected, while in the negative control (right), the Gal4-VP64 construct was included. The bars correspond to the micrographs in figure 2.
+
           <i><b>Figure 4: Fluorescence Readout After 48 Hours for Two Conditions of GFLG Linker.</b> The
 +
          fluorescence intensity for mCherry was measured for the GFLG linker and normalized against a baseline eGFP
 +
          fluorescence intensity. Both samples were transfected with plasmids encoding eGFP and the composite part. In
 +
          the null control (left), no plasmid encoding the Gal4-VP64 construct was transfected, while in the negative
 +
          control (right), the Gal4-VP64 construct was included. The bars correspond to the micrographs in figure 3.</i>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 
 
   </section>
 
   </section>
 
   <section id="5">
 
   <section id="5">
 
     <h1>5. References</h1>
 
     <h1>5. References</h1>
 
     <p>
 
     <p>
Muench, P., Fiumara, M., Southern, N., Coda, D., Aschenbrenner, S., Correia, B., Gräff, J., Niopek, D., & Mathony, J. (2023). A modular toolbox for the optogenetic deactivation of transcription. bioRxiv, 2023.2011.2006.565805. <a
+
      Muench, P., Fiumara, M., Southern, N., Coda, D., Aschenbrenner, S., Correia, B., Gräff, J., Niopek, D., &amp;
        href="https://doi.org/10.1101/2023.11.06.565805" target="_blank">https://doi.org/10.1101/2023.11.06.565805</a>
+
      Mathony, J. (2023). A modular toolbox for the optogenetic deactivation of transcription. bioRxiv,
</p>
+
      2023.2011.2006.565805. <a href="https://doi.org/10.1101/2023.11.06.565805"
 +
        target="_blank">https://doi.org/10.1101/2023.11.06.565805</a>
 +
    </p>
 
   </section>
 
   </section>
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 11:34, 2 October 2024


BBa_K5237022

mCherry Expression Cassette: UAS, Minimal Promoter, mCherry

This composite part features the 5x Gal4 upstream activating sequence (UAS) followed by a minimal promoter (BBa_K3281012) to regulate the expression of mCherry (BBa_J06504). We used this part for a fluorescence readout assay to investigate cathepsin B cleavage of different peptide linkers in vivo: The fusion protein NLS-Gal4-Linker-VP64 (BBa_K5237020) was overexpressed in HEK293T cells. Binding of Gal4 to the 5x Gal4 UAS induces overexpression of mCherry through VP64 trans-activation, resulting in bright red fluorescence, which is useful for visualizing gene expression. Separation of Gal4 and VP64 through cleavage of the linker would consequently reduce mCherry expression.



The PICasSO Toolbox
Figure 1: How our Part Collection Can be Used to Engineer New Staples


While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D spatial organization of DNA is well-known to be an important layer of information encoding in particular in eukaryotes, playing a crucial role in gene regulation and hence cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the genomic spatial architecture are limited, hampering the exploration of 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox for rationally engineering genome 3D architectures in living cells, based on various DNA-binding proteins.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as "half staples" that can be combined by scientists to compose entirely new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for successful stapling and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the functionality of our Cas and Basic staples. These consist of staples dependent on cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, dynamic stapling in vivo. We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into target cells, including mammalian cells, with our new interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a luciferase reporter, which allows for straightforward experimental assessment of functional enhancer hijacking events in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome engineering.

Our part collection includes:

DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo
BBa_K5237000 Fusion Guide RNA Entry Vector MbCas12a-SpCas9 Entry vector for simple fgRNA cloning via SapI
BBa_K5237001 Staple Subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
BBa_K5237002 Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple Subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple Subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple Staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple Subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple Subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini Staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237014 Fusion Guide RNA Processing Casette Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs
BBa_K4643003 IncP Origin of Transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promoter, mCherry Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS Binding Casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal Promoter- Firefly Luciferase Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking

1. Sequence Overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 120
    Illegal XhoI site found at 138
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

This composite part utilizes the 5x Gal4 Upstream Activating Sequence (UAS) to regulate mCherry expression. When Gal4 is present in the cell, its DNA-binding domain (DBD) binds to the UAS, promoting overexpression of mCherry via VP64 (Muench et al., 2023). This results in enhanced production of the mCherry protein, which emits bright red fluorescence, making it an effective reporter for gene expression. This construct enriches our part collection, as it can be used in fluorescence readout assays, such as the one depicted in figure 2, where it reports the activity of our cathepsin B-cleavable linker (BBa_K5237020).

Cathepsin B Fluorescence Readout Assay
Figure 2: Schematic Illustration of the Cathepsin B Fluorescence Readout Assay. The DNA-binding domain (DBD) of Gal4 is conjugated to the transactivator domain VP64 via a cathepsin B-cleavable peptide linker. Binding of the Gal4-DBD to the upstream activating sequence (UAS) in proximity to the mCherry gene induces mCherry overexpression via VP64. Cathepsin B cleavage of the linker separates Gal4-DBD and VP64 and consequently reduces mCherry expression.

3. Assembly and Part Evolution

The plasmid was sourced from a plasmid bank, with the mCherry coding sequence located downstream of the 5x Gal4 UAS promoter. No additional modifications were made to the construct, ensuring standard functionality for use in synthetic biology applications.

4. Results

Fluorescence readout assays were performed in HEK293T cells transfected with plasmids encoding eGFP, this composite part, and a Gal4-VP64 construct (BBa_K5237020). The null control was not transfected with a plasmid encoding the Gal4-VP64 construct. As can be seen in figures 3 and 4, there was a large increase in red fluorescence intensity compared to the null control, confirming successful expression of mCherry under the control of the UAS promoter. This demonstrates the part’s effectiveness as a tool for monitoring Gal4-mediated gene expression in mammalian cells.

Micrographs
Figure 3: Micrographs of HEK293T Cells in Two Conditions. Pictures were taken with a fluorescence microscope 48 hours after transfection. An overlay of brightfield, eGFP and mCherry is shown. Both samples were transfected with plasmids encoding eGFP and the composite part. In the null control (left), no plasmid encoding the Gal4-VP64 construct was transfected, while in the negative control (right), the Gal4-VP64 construct was included. The test sample is not displayed here, as it is irrelevant to this specific comparison.
Fluorescence Readout Assay
Figure 4: Fluorescence Readout After 48 Hours for Two Conditions of GFLG Linker. The fluorescence intensity for mCherry was measured for the GFLG linker and normalized against a baseline eGFP fluorescence intensity. Both samples were transfected with plasmids encoding eGFP and the composite part. In the null control (left), no plasmid encoding the Gal4-VP64 construct was transfected, while in the negative control (right), the Gal4-VP64 construct was included. The bars correspond to the micrographs in figure 3.

5. References

Muench, P., Fiumara, M., Southern, N., Coda, D., Aschenbrenner, S., Correia, B., Gräff, J., Niopek, D., & Mathony, J. (2023). A modular toolbox for the optogenetic deactivation of transcription. bioRxiv, 2023.2011.2006.565805. https://doi.org/10.1101/2023.11.06.565805