Difference between revisions of "Part:BBa K5034210"

(Origin (Organism))
 
(11 intermediate revisions by one other user not shown)
Line 6: Line 6:
  
 
===Basic Description===
 
===Basic Description===
This basic part encodes the PPX gene which is initially from Escherichia coli and we performed codon optimization on, is expressed in the PYYDT plasmid. This basic part is designed to facilitate the complete conversion of inorganic polyphosphate (PolyP) to inorganic phosphate (Pi). The PPX enzyme, also known as exopolyphosphatase, is crucial for degrading PolyP into Pi, which is essential for various cellular processes. Inactivation of PPX1 had no effect on the Poly P level in nuclei in the stationary phase, Poly P level in the nuclei increased 1.5- and 2-fold in the exponential phase in the parent strain and PPX1 mutant, respectively.
+
This basic part encodes the PPX gene which is initially from Escherichia coli and we performed codon optimization on. This basic part is designed to facilitate the complete conversion of inorganic polyphosphate (PolyP) to inorganic phosphate (Pi). The PPX enzyme, also known as exopolyphosphatase, is crucial for degrading PolyP into Pi, which is essential for various cellular processes. Inactivation of PPX had no effect on the PolyP level in nuclei in the stationary phase, PolyP level in the nuclei increased 1.5- and 2-fold in the exponential phase in the parent strain and PPX mutant, respectively.
In a sentence, it can reversibly convert Poly p to Pi thoroughly. For the first time, we expressed this element in a strain of Shewanella and conducted codon optimization based on Shewanella.We tested the effects of the introduction of this element on electricity production and phosphorus metabolism.
+
  
 +
In a sentence, it can reversibly convert PolyP to Pi thoroughly. For the first time, we expressed this element in a strain of <i>S. oneidensis</i> and conducted codon optimization based on <i>S. oneidensis</i>. We tested the effects of the introduction of this element on electricity production and phosphorus metabolism.
 +
 +
<html>
 +
<img src="https://static.igem.wiki/teams/5034/engineering/machanism-of-ppx.png" style="width:60%;height:auto;">
 +
<br>
 
Figure 1: Basic function of PPX
 
Figure 1: Basic function of PPX
 +
</html>
 +
 +
===Sequence and Features===
 +
<partinfo>BBa_K5034210 SequenceAndFeatures</partinfo>
 +
 +
===Construct features(only coding sequence is included in basic parts)===
  
===Construct features(only coding sequence included in basic part)===
 
 
Promoter: Constitutive promoter for continuous expression. We use tac promoter in our experiment.
 
Promoter: Constitutive promoter for continuous expression. We use tac promoter in our experiment.
 +
 
PPX Coding Sequence: Encodes the exopolyphosphatase enzyme.
 
PPX Coding Sequence: Encodes the exopolyphosphatase enzyme.
Terminator: Efficient transcription terminator to ensure proper mRNA processing. We use T7Te terminator in our experiment.
 
  
 +
Terminator: Efficient transcription terminator to ensure proper mRNA processing. We use a double terminator rrnBT1-T7TE(BBa_B0015) in our experiment.
 +
 +
<html>
 +
<img src="https://static.igem.wiki/teams/5034/engineering/fig17.png" style="width:60%;height:auto;">
 +
<br>
 
Figure 2: PCR of target genes PCR before plasmids construction (The extra small fragment in the picture is primer dimer)
 
Figure 2: PCR of target genes PCR before plasmids construction (The extra small fragment in the picture is primer dimer)
 
+
</html>
  
 
===Origin (Organism)===
 
===Origin (Organism)===
The PPX gene was sourced from Yeast.  
+
 
 +
The PPX gene was sourced from <i>S. cerevisiae</i>.
  
 
===Experimental Characterization and results===
 
===Experimental Characterization and results===
In our team’s previous research we found that the behavior of the modified Shewanella did not reach our expectation and the electron microscopic observation also showed an abnormal morphology of the bacterium, we postulated that too much PPK1 may lead to an abnormal charge distribution in the bacterium thus result in a decrease in the bacterium's activity and a reduction in its capacity for electricity production, so we planed to improve the situation by introducing different polyphosphate hydrolases which influence the phosphorus metabolism of Shewanella.
+
In our team’s previous research we found that the behavior of the modified <i>S. oneidensis</i> did not reach our expectation and the electron microscopic observation also showed an abnormal morphology of the bacterium, we postulated that too much PPK1 may lead to an abnormal charge distribution in the bacterium thus result in a decrease in the bacterium's activity and a reduction in its capacity for electricity production, so we planed to improve the situation by introducing different polyphosphate hydrolases which influence the phosphorus metabolism of <i>S. oneidensis</i> .
 +
 
 
Electricity production: Using half-cell reaction(electrochemistry) to measure the electricity production ability.
 
Electricity production: Using half-cell reaction(electrochemistry) to measure the electricity production ability.
Capacity to polymerize phosphorus: Conducting molybdate assays to determine Pi concentration.
 
Conducting molybdate assays to determine Pi concentration and found PPX a bad capacity to polymerize phosphorus.
 
  
Figure 3: statistical data on electricity production capacity of Shewanella with the introduction of different hydrolases
+
Capacity to polymerize phosphorus: Conducting molybdate assays to determine Pi concentration. We conducted molybdate assays to determine Pi concentration and found that PPX has a bad capacity to polymerize phosphorus.
  
Figure 4: statistical data on the phosphorus accumulation capacity of Shewanella with PPX
+
<html><p>Details of all experiments can be found at the <a href="https://2024.igem.wiki/nanjing-china/experiments">Experiments section on the Wiki.</a></p></html>
  
Figure 5: ATP level in Shewanella with the introduction of different hydrolases
+
<html>
 +
<img src="https://static.igem.wiki/teams/5034/engineering/current-with-different-hydrolases.png" style="width:60%;height:auto;">
 +
<br>
 +
Figure 3: statistical data on electricity production capacity of <i>S. oneidensis</i> with the introduction of different hydrolases
 +
</html>
 +
<html>
 +
<img src="https://static.igem.wiki/teams/5034/engineering/pi-of-ppx.png" style="width:60%;height:auto;">
 +
<br>
 +
Figure 4: statistical data on the phosphorus accumulation capacity of <i>S. oneidensis</i> with PPX
 +
</html>
 +
<html>
 +
<img src="https://static.igem.wiki/teams/5034/engineering/atp-level-with-different-hydrolyases.png" style="width:60%;height:auto;">
 +
<br>
 +
Figure 5: ATP level in <i>S. oneidensis</i> with the introduction of different hydrolases
 +
</html>
  
===References===
+
===Chasis and genetic context===
1.Lichko, L. P., Kulakovskaya, T. V., & Kulaev, I. S. (2006). Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes. Biochemistry (Moscow), 71(11), 1171-1175.
+
<!-- Add more about the biology of this part here
+
===Usage and Biology===
+
  
<!-- -->
+
This part can be normally expressed and function properly in <i>S. oneidensis</i>.
<span class='h3bb'>Sequence and Features</span>
+
<partinfo>BBa_K5034210 SequenceAndFeatures</partinfo>
+
  
 +
===Potential applications===
  
<!-- Uncomment this to enable Functional Parameter display
+
PPX can hydrolyze inorganic polyphosphate (PolyP) to inorganic phosphate (Pi), which can be a crucial part in phosphate metabolism.
===Functional Parameters===
+
 
<partinfo>BBa_K5034210 parameters</partinfo>
+
===References===
<!-- -->
+
1.Lichko, L. P., Kulakovskaya, T. V., & Kulaev, I. S. (2006). Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes. Biochemistry (Moscow), 71(11), 1171-1175.

Latest revision as of 14:55, 30 September 2024


PolyP ---> Pi


Basic Description

This basic part encodes the PPX gene which is initially from Escherichia coli and we performed codon optimization on. This basic part is designed to facilitate the complete conversion of inorganic polyphosphate (PolyP) to inorganic phosphate (Pi). The PPX enzyme, also known as exopolyphosphatase, is crucial for degrading PolyP into Pi, which is essential for various cellular processes. Inactivation of PPX had no effect on the PolyP level in nuclei in the stationary phase, PolyP level in the nuclei increased 1.5- and 2-fold in the exponential phase in the parent strain and PPX mutant, respectively.

In a sentence, it can reversibly convert PolyP to Pi thoroughly. For the first time, we expressed this element in a strain of S. oneidensis and conducted codon optimization based on S. oneidensis. We tested the effects of the introduction of this element on electricity production and phosphorus metabolism.


Figure 1: Basic function of PPX

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Construct features(only coding sequence is included in basic parts)

Promoter: Constitutive promoter for continuous expression. We use tac promoter in our experiment.

PPX Coding Sequence: Encodes the exopolyphosphatase enzyme.

Terminator: Efficient transcription terminator to ensure proper mRNA processing. We use a double terminator rrnBT1-T7TE(BBa_B0015) in our experiment.


Figure 2: PCR of target genes PCR before plasmids construction (The extra small fragment in the picture is primer dimer)

Origin (Organism)

The PPX gene was sourced from S. cerevisiae.

Experimental Characterization and results

In our team’s previous research we found that the behavior of the modified S. oneidensis did not reach our expectation and the electron microscopic observation also showed an abnormal morphology of the bacterium, we postulated that too much PPK1 may lead to an abnormal charge distribution in the bacterium thus result in a decrease in the bacterium's activity and a reduction in its capacity for electricity production, so we planed to improve the situation by introducing different polyphosphate hydrolases which influence the phosphorus metabolism of S. oneidensis .

Electricity production: Using half-cell reaction(electrochemistry) to measure the electricity production ability.

Capacity to polymerize phosphorus: Conducting molybdate assays to determine Pi concentration. We conducted molybdate assays to determine Pi concentration and found that PPX has a bad capacity to polymerize phosphorus.

Details of all experiments can be found at the Experiments section on the Wiki.


Figure 3: statistical data on electricity production capacity of S. oneidensis with the introduction of different hydrolases
Figure 4: statistical data on the phosphorus accumulation capacity of S. oneidensis with PPX
Figure 5: ATP level in S. oneidensis with the introduction of different hydrolases

Chasis and genetic context

This part can be normally expressed and function properly in S. oneidensis.

Potential applications

PPX can hydrolyze inorganic polyphosphate (PolyP) to inorganic phosphate (Pi), which can be a crucial part in phosphate metabolism.

References

1.Lichko, L. P., Kulakovskaya, T. V., & Kulaev, I. S. (2006). Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes. Biochemistry (Moscow), 71(11), 1171-1175.