Difference between revisions of "Part:BBa K5237101"

 
(7 intermediate revisions by 2 users not shown)
Line 29: Line 29:
 
     border: 0.5px solid black;
 
     border: 0.5px solid black;
 
     border-collapse: collapse;
 
     border-collapse: collapse;
 +
    padding: 5px;
 
   }
 
   }
 +
  .thumbcaption {
 +
      text-align:justify !important;
 +
    }
 +
 +
 +
  a[href ^="https://"],.link-https {
 +
    background: none !important;
 +
    padding-right:0px !important;
 +
}
  
  th,
 
  td {
 
    padding: 1.5px;
 
  }
 
 
</style>
 
</style>
 
<body>
 
<body>
 
     <!-- Part summary -->
 
     <!-- Part summary -->
     <section id="1">
+
     <section>
 
       <h1>Truncated and Mutated Form of Cathepsin B</h1>
 
       <h1>Truncated and Mutated Form of Cathepsin B</h1>
       <p>EDIT: Cathepsin B is a lysosomal protease present in the cytosol of various cancer types. We overexpressed wild-type cathepsin B in HEK293T cells to investigate cathepsin B induced cleavage of different peptide linkers via a fluorescence readout assay. We successfully showed that the linker GFLG was efficiently cleaved by cathepsin B <i>in vivo</i>. Furthermore, we were able to demonstrate that wild-type cathepsin B matured into its active forms when overexpressed in HEK293T cells. Together, these findings enable the functionalization of our PICasSO system for a wide range of therapeutic and synthetic biology applications.</p>
+
       <p>Cathepsin B is a lysosomal protease involved in the progression of various cancer types. Here, we present a truncated and mutated form of cathepsin B (&Delta;1-20, D22A, H110A, R116A). This form of cathepsin B lacks an N-terminal signal peptide responsible for co-translational targeting of cathepsin B to the lumen of the endoplasmic reticulum. Additionally, we introduced three point mutations into the amino acid sequence of cathepsin B to increase its catalytic activity at higher pH values. We investigated cathepsin B induced cleavage of different peptide linkers via a fluorescence readout assay indicating that the truncated and mutated form of cathepsin B was not active in the cytosol. Western blotting further confirmed that our truncated and mutated form of cathepsin B was only poorly expressed in HEK293T cells.</p>
 
       <p>&nbsp;</p>
 
       <p>&nbsp;</p>
    </section>
 
 
   <div id="toc" class="toc">
 
   <div id="toc" class="toc">
 
     <div id="toctitle">
 
     <div id="toctitle">
Line 49: Line 54:
 
     <ul>
 
     <ul>
 
       <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 
       <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
             overview</span></a>
+
             Overview</span></a>
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
 
       <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
Line 55: Line 60:
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
 
       <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
             and part evolution</span></a>
+
             and Part Evolution</span></a>
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
             class="toctext">Results</span></a>
 
             class="toctext">Results</span></a>
 +
            <ul>
 +
              <li class="toclevel-2 tocsection-6"><a href="#4.1"><span class="tocnumber">4.1</span class="toctext"> The Truncated and Mutated Form of Cathepsin B Is not Catalytically Active <i>in Vivo</i></span></a>
 +
              </li>
 +
              <li class="toclevel-2 tocsection-7"><a href="#4.2"><span class="tocnumber">4.2</span class="toctext"> The Truncated and Mutated Form of Cathepsin B Was Poorly Expressed in HEK293T Cells</span></a></li>
 +
              <li class="toclevel-2 tocsection-8"><a href="#4.3"><span class="tocnumber">4.3</span class="toctext"> Conclusion</span></a>
 +
              </li>
 +
            </ul>
 
       </li>
 
       </li>
       <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
+
       <li class="toclevel-1 tocsection-9"><a href="#5"><span class="tocnumber">5</span> <span
 
             class="toctext">References</span></a>
 
             class="toctext">References</span></a>
 
       </li>
 
       </li>
 
     </ul>
 
     </ul>
 
   </div>
 
   </div>
 +
</section>
 
   <section id="1">
 
   <section id="1">
     <h1>1. Sequence overview</h1>
+
     <h1>1. Sequence Overview</h1>
 
   </section>
 
   </section>
 
</body>
 
</body>
Line 88: Line 101:
 
   </section>
 
   </section>
 
   <section id="3">
 
   <section id="3">
     <h1>3. Assembly and part evolution</h1>
+
     <h1>3. Assembly and Part Evolution</h1>
     <p>The first modification we made to the gene encoding for human cathepsin B, was the deletion of the first twenty amino acids. This N-terminally truncated version of cathepsin B had previously been observed to have catalytic activity even in the absence of lysosomal proteases like pepsin (Müntener <i>et al.</i>, 2005). Furthermore, we introduced three point mutations into the polypeptide chain of cathepsin B (D22A, H110A, and R116A). This has been shown to increase the activity of cathepsin B at higher pH values by disrupting the interactions of an occluding loop with the substrate binding pocket of cathepsin B (Nägler <i>et al.</i>, 1997).</p>
+
     <p>We designed a fluorescence readout assay in HEK293T cells based on expression of mCherry induced by the transactivator VP64. VP64 was conjugated to the DNA-binding domain (DBD) of Gal4 through the GFLG linker (<a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a>). Binding of Gal4-DBD upstream of a gene encoding the fluorescence protein mCherry induces overexpression of mCherry by VP64. Consequently, separation of Gal4-DBD and VP64 by cathepsin B cleavage of the GFLG linker reduces mCherry expression (see <b>Fig. 1</b>).</p>
  
  </section>
+
    <div class="thumb">
  <section id="4">
+
      <div class="thumbinner" style="width:450px;"><img alt="Cathepsin B Fluorescence Readout Assay" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-gal4-vp64-mechanism.svg" width="450"
    <h1>4. Results</h1>
+
            class="thumbimage">
    <h3>The Peptide Linker GFLG Is Cleaved by Cathepsin B <i>in Vivo</i></h3>
+
        <div class="thumbcaption">
<p>We performed a fluorescence readout assay in HEK293T cells to investigate cathepsin B cleavage of different peptide linkers. 24&nbsp;hours after transfection, we added doxorubicin in a final concentration of 500 nM to the cell supernatant. <b>Figure 1</b> shows the fluorescence intensity of mCherry for five different peptide linkers (GFLG, FFRG, FRRL, VA, FK). The negative control was not transfected with the plasmid encoding cathepsin B. We investigated two different test conditions, in which we either transfected 30&nbsp;ng or 60&nbsp;ng of the plasmid encoding cathepsin B. The fluorescence intensity of mCherry was normalized by the measured fluorescence intensity of eGFP in each condition. Additionally, the values for 30&nbsp;ng and 60&nbsp;ng cathepsin B were normalized against the corresponding negative controls. One data point for the VA linker, transfected with 60&nbsp;ng of the plasmid encoding cathepsin B, was excluded due to severe deviation from the other values. We conducted a two-way analysis of variance (ANOVA) to assess the significance of the observed differences between the negative control and the test conditions for each linker. As the negative control did not contain the plasmid encoding cathepsin B, we expected the measured fluorescence intensity of mCherry to be the highest in these conditions. However, this was only observed for the GFLG and FK linkers. Contrary to our expectations, the fluorescence intensity of the negative control was the lowest out of the three conditions tested for the remaining linkers. It appears that the addition of the plasmid encoding cathepsin B increases mCherry fluorescence intensity when the linker is not cleaved. However, this increase is only significant for the FFRG linker in the 60&nbsp;ng condition. For the GFLG linker, we observed significant decreases in fluorescence intensity between the negative control and both test conditions, with no difference between the 30&nbsp;ng and 60&nbsp;ng conditions. For the FK linker, no significant decreases in fluorescence intensity between the negative control and the test conditions were observed.</p>
+
          <i><b>Figure 1: Schematic Illustration of the Cathepsin B Fluorescence Readout Assay.</b></i> The DNA-binding domain (DBD) of Gal4 is conjugated to the transactivator domain VP64 via a cathepsin B-cleavable peptide linker. Binding of the Gal4-DBD to the upstream activating sequence (UAS) in proximity to the mCherry gene induces mCherry overexpression via VP64. Cathepsin B cleavage of the linker separates Gal4-DBD and VP64 and consequently reduces mCherry expression.
 +
        </div>
 +
      </div>
 +
    </div>
 +
 
 +
<p>We transfected our genetic constructs into HEK293T cells. The negative control was not transfected with the plasmid encoding cathepsin B. We investigated two different test conditions, in which we either transfected 30&nbsp;ng or 60&nbsp;ng of the plasmid encoding cathepsin B. The fluorescence intensity of mCherry was measured 48&nbsp;hours after transfection. Our initial tests did not result in the unambiguous identification of a cathepsin B-cleavable peptide linker (see <b>Fig. 2</b>). For all linkers, we observed no significant decrease in fluorescence intensity between the negative control and test conditions. In some cases, the fluorescence intensity even increased in the test conditions compared to the negative control.
 +
</p>
  
 
     <div class="thumb">
 
     <div class="thumb">
       <div class="thumbinner" style="width:450px;"><a href="placeholder"
+
       <div class="thumbinner" style="width:450px;"><img alt="Fluorescence Readout" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-results/catb-fluorescent-readout-no-dox-w.svg" width="450"
          class="image"><img alt="Fluorescence Readout" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-results/catb-fluorescent-readout-final-results-w.svg" width="450"
+
             class="thumbimage">
             class="thumbimage"></a>
+
 
         <div class="thumbcaption">
 
         <div class="thumbcaption">
           <i><b>Figure 1: Fluorescence Readout After 48&nbsp;hours for Five Different Peptide Linkers and Three Different Conditions.</b></i> The fluorescence intensity for mCherry was measured for five different linkers and normalized against a baseline eGFP fluorescence intensity. The negative control was not transfected with the plasmid encoding cathepsin B. The fluorescence intensity of the negative control was set to one. Two different test conditions were investigated, in which either 30&nbsp;ng or 60&nbsp;ng of the plasmid encoding cathepsin B were transfected. The fluorescent readout was analyzed using a two-way ANOVA. Medium: DMEM (10% FCS). P values: ns, P > 0.05; *, P &le; 0.05; **, P &le; 0.01; ***, P &le; 0.001; ****, P &le; 0.0001.
+
           <i><b>Figure 2: Fluorescence Readout After 48&nbsp;hours for Five Different Peptide Linkers and Three Different Conditions.</b></i> The fluorescence intensity for mCherry was measured for five different linkers. The negative control was not transfected with the plasmid encoding cathepsin B. The fluorescence intensity of the negative control was set to one. Two different test conditions were investigated, in which either 30&nbsp;ng or 60&nbsp;ng of the plasmid encoding cathepsin B were transfected.
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
  
<h3>mCherry and eGFP are Both Expressed in HEK293T Cells</h3>
+
<p>Since cathepsin B is a lysosomal protease that is normally only active in the lysosome and the extracellular environment but not in the cytosol, we decided to change the native amino acid sequence of cathepsin B. The first modification we made to the gene encoding human cathepsin B was the deletion of the first twenty amino acids. This N-terminally truncated version of cathepsin B had previously been observed to have catalytic activity even in the absence of lysosomal proteases like pepsin (Müntener <i>et al.</i>, 2005). Furthermore, we introduced three point mutations into the polypeptide chain of cathepsin B (D22A, H110A, and R116A). This has been shown to increase the activity of cathepsin B at higher pH values by disrupting the interactions of an occluding loop with the substrate binding pocket of cathepsin B (Nägler <i>et al.</i>, 1997).</p>
<p><b>Figure 2</b> shows micrographs taken with a fluorescence microscope of three different conditions: the null control, the negative control and the test sample. All samples were transfected with plasmids encoding eGFP and mCherry. The null control and the negative control were not transfected with the plasmid encoding cathepsin B. The null control was also not transfected with any of the plasmids encoding Gal4-Linker-VP64 constructs. The test sample was transfected with 30&nbsp;ng of the plasmid encoding cathepsin B and with the plasmid encoding Gal4-GFLG-VP64. As expected, the null control showed no detectable mCherry signal, since no plasmid encoding a Gal4-V64 construct was transfected. Consequently, mCherry overexpression via VP64 could not be induced. However, we observed a high fluorescence intensity for eGFP, indicating that the transfection was successful. The negative control showed strong signals of both mCherry and eGFP. Therefore, it can be assumed that the transfection was successful and that our mCherry readout system is functional. Interestingly, there are some cells which either seem to only express mCherry or eGFP and some cells that show no fluorescence signal. The test sample showed less eGFP and mCherry fluorescence compared to the negative control. We expected to observe reduced fluorescence intensity of mCherry, as the transfected cells would express cathepsin B, which cleaves the linker, thereby decreasing mCherry expression.</p>
+
 
 +
  </section>
 +
  <section id="4">
 +
    <h1>4. Results</h1>
 +
<section id="4.1">
 +
    <h3>4.1 The Truncated and Mutated Form of Cathepsin B Is not Catalytically Active <i>in Vivo</i></h3>
 +
We performed the same fluorescence readout assay in HEK293T cells that we also used for wild-type cathepsin B (<a href="https://parts.igem.org/Part:BBa_K5237100" target="_blank">BBa_K5237100</a>). The fluorescence intensity of mCherry was measured 48&nbsp;hours after transfection. However, we observed no decrease in fluorescence between our negative control and test conditions, indicating that Gal4-DBD-Linker-VP64 was not cleaved (see <b>Fig. 3</b>).</p>
  
 
     <div class="thumb">
 
     <div class="thumb">
       <div class="thumbinner" style="width:700px;"><a href="placeholder"
+
       <div class="thumbinner" style="width:450px;"><img alt="Fluorescence Readout" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-results/catb-fluorescent-readout-mutated-and-truncated-w.svg" width="450"
          class="image"><img alt="Fluorescence Readout" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-fluorescence-microscope-w.png" width="700"
+
             class="thumbimage">
             class="thumbimage"></a>
+
 
         <div class="thumbcaption">
 
         <div class="thumbcaption">
           <i><b>Figure 2: Micrographs of HEK293T Cells in Two Control Conditions and One Test Condition.</b></i> Micrographs were taken with a fluorescence microscope 48&nbsp;hours after transfection. An overlay of brightfield, eGFP and mCherry is shown. The null control and the negative control were not transfected with the plasmid encoding cathepsin B. The Null Control was also not transfected with any of the plasmids encoding Gal4-Linker-VP64 constructs. The test sample was transfected with 30&nbsp;ng of the plasmid encoding cathepsin B and with the plasmid encoding Gal4-GFLG-VP64. The micrograph of the test sample is not from the same biological replicate as the micrographs of the two controls.
+
           <i><b>Figure 3: Fluorescence Readout for the Truncated and Mutated Version of Cathepsin B.</b> The fluorescence intensity for mCherry was measured for five different linkers. The negative control was not transfected with the plasmid encoding cathepsin B. The fluorescence intensity of the negative control was set to one. Two different test conditions were investigated, in which either 30&nbsp;ng or 60&nbsp;ng of the plasmid encoding cathepsin B were transfected.</i>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
     </div>  
+
     </div>
 +
</section>
  
<h3>Mature Cathepsin B is Expressed in HEK293T Cells</h3>
+
<section id="4.2">
<p><b>Figure 3</b> shows a western blot of the wild-type (wt) version of cathepsin B as well as the truncated and mutated version of cathepsin B (&Delta;1-20, D22A, H110A, R116A). Cells of both cathepsin B versions were treated with 500 nM doxorubicin (dox) 24&nbsp;hours post-transfection and incubated for additional 24&nbsp;hours. For each condition, three replicates were blotted. We observed no differences in protein expression levels between the dox-treated and untreated wt versions of cathepsin B. For the truncated and mutated version of cathepsin B, however, only the untreated samples showed the corresponding band at approximately 36&nbsp;kDa expected for this version of cathepsin B. Additionally, the bands of the truncated and mutated version appeared much weaker than the ones of the wt, indicating poorer protein expression. The household protein &beta;-tubulin is visible in all samples at approximately 55&nbsp;kDa. The wt cathepsin B additionally showed bands for pro-cathepsin B at approximately 42&nbsp;kDa, a mature single-chain version of cathepsin B at approximately 33&nbsp;kDa and a mature double-chain version at approximately 26&nbsp;kDa.</p>
+
<h3>4.2 The Truncated and Mutated Form of Cathepsin B Was Poorly Expressed in HEK293T Cells</h3>
 +
<p><b>Figure 4</b> shows a western blot of the wild-type (wt) version of cathepsin B as well as the truncated and mutated version of cathepsin B (&Delta;1-20, D22A, H110A, R116A). Cells of both cathepsin B versions were treated with 500 nM doxorubicin (dox) 24&nbsp;hours post-transfection and incubated for additional 24&nbsp;hours. For each condition, three replicates were blotted. We observed no differences in protein expression levels between the dox-treated and untreated wt versions of cathepsin B. For the truncated and mutated version of cathepsin B, however, only the untreated samples showed the corresponding band at approximately 36&nbsp;kDa expected for this version of cathepsin B. Additionally, the bands of the truncated and mutated version appeared much weaker than the ones of the wt, indicating poorer protein expression.</p>
  
 
     <div class="thumb">
 
     <div class="thumb">
       <div class="thumbinner" style="width:450px;"><a href="placeholder"
+
       <div class="thumbinner" style="width:450px;"><img alt="Fluorescence Readout" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-wb-w.svg" width="450"
          class="image"><img alt="Fluorescence Readout" src="https://static.igem.wiki/teams/5237/wetlab-results/catb-wb-w.svg" width="450"
+
             class="thumbimage">
             class="thumbimage"></a>
+
 
         <div class="thumbcaption">
 
         <div class="thumbcaption">
           <i><b>Figure 3: Western Blot of Two Versions of Cathepsin B With and Without Doxorubicin.</b></i> From left to right: protein ladder, wild-type (wt) cathepsin B with (+) and without (-) doxorubicin, truncated and mutated version of cathepsin B with (+) and without (-) doxorubicin. The household protein, &beta;-tubulin, is visible in all samples at 55&nbsp;kDa. The wt cathepsin B also shows bands for pro-cathepsin B at 42&nbsp;kDa, mature single-chain cathepsin B at 33&nbsp;kDa and mature double-chain cathepsin B at 26&nbsp;kDa. The band for the truncated and mutated version of cathepsin B can be seen in the samples without doxorubicin at 36&nbsp;kDa.
+
           <i><b>Figure 4: Western Blot of Two Versions of Cathepsin B With and Without Doxorubicin.</b></i> From left to right: protein ladder, wild-type (wt) cathepsin B with (+) and without (-) doxorubicin, truncated and mutated version of cathepsin B with (+) and without (-) doxorubicin. The household protein &beta;-tubulin is visible in all samples at 55&nbsp;kDa. The wt cathepsin B also shows bands for pro-cathepsin B at 42&nbsp;kDa, mature single-chain cathepsin B at 33&nbsp;kDa and mature double-chain cathepsin B at 26&nbsp;kDa. The band for the truncated and mutated version of cathepsin B can be seen in the samples without doxorubicin at 36&nbsp;kDa.
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
 +
</section>
  
<h3>Conclusion</h3>
+
<section id="4.3">
<p>All in all, these findings demonstrate that our fluorescence-based readout assay can reliably detect cathepsin B-mediated cleavage of peptide linkers, with the GFLG linker showing particular susceptibility to cleavage. This makes GFLG a promising candidate for targeted applications in environments with upregulated cathepsin B activity, such as in cancerous tissues. Additionally, our cathepsin B-cleavage linker can be combined with caged inteins (Gramespacher <i>et al.</i>, 2017) conjugated to a dead Cas9 to selectively induce Cas-stapling in the presence of cathepsin B.</p>
+
<h3>4.3 Conclusion</h3>
 +
<p>Our results indicate that the truncated and mutated form of cathepsin B was poorly expressed in HEK293T cells. Therefore, we continued to use the wild-type form of cathepsin B for further experiments. After consulting the literature, we decided to treat cells with the cytostaticum doxorubicin to induce lysosomal escape of cathepsin B, as had been previously reported (Bien <i>et al.</i>, 2004).</p>
 +
</section>
 
   </section>
 
   </section>
 
   <section id="5">
 
   <section id="5">
 
     <h1>5. References</h1>
 
     <h1>5. References</h1>
 
<p>
 
<p>
Gramespacher, J. A., Stevens, A. J.,&nbsp;nguyen, D. P., Chin, J. W., & Muir, T. W. (2017). Intein Zymogens: Conditional Assembly and Splicing of Split Inteins via Targeted Proteolysis. J Am Chem Soc, 139(24), 8074-8077. <a
+
Müntener, K., Willimann, A., Zwicky, R., Svoboda, B., Mach, L., & Baici, A. (2005). Folding Competence of N-terminally Truncated Forms of Human Procathepsin B*. Journal of Biological Chemistry, 280(12), 11973-11980. <a
         href="https://doi.org/10.1021/jacs.7b02618" target="_blank">https://doi.org/10.1021/jacs.7b02618</a>  
+
         href="https://doi.org/10.1074/jbc.M413052200" target="_blank">https://doi.org/10.1074/jbc.M413052200</a>  
 
</p>  
 
</p>  
 
<p>
 
<p>
Jin, C., EI-Sagheer, A. H., Li, S., Vallis, K. A., Tan, W., & Brown, T. (2022). Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers. Angewandte Chemie International Edition, 61(13), e202114016. <a
+
Nägler, D. K., Storer, A. C., Portaro, F. C. V., Carmona, E., Juliano, L., & Ménard, R. (1997). Major Increase in Endopeptidase Activity of Human Cathepsin B upon Removal of Occluding Loop Contacts. Biochemistry, 36(41), 12608-12615. <a
         href="https://doi.org/10.1002/anie.202114016" target="_blank">https://doi.org/10.1002/anie.202114016</a>  
+
         href="https://doi.org/10.1021/bi971264+" target="_blank">https://doi.org/10.1021/bi971264+</a>
</p>  
+
</p>  
 
<p>
 
<p>
Ruan, H., Hao, S., Young, P., & Zhang, H. (2015). Targeting Cathepsin B for Cancer Therapies. Horiz Cancer Res, 56, 23-40.
+
Ni, J., Lan, F., Xu, Y., Nakanishi, H., & Li, X. (2022). Extralysosomal cathepsin B in central nervous system: Mechanisms and therapeutic implications. Brain Pathol, 32(5), e13071. <a
 +
        href="https://doi.org/10.1111/bpa.13071" target="_blank">https://doi.org/10.1111/bpa.13071</a>
 
</p>
 
</p>
 
<p>
 
<p>
Shim, N., Jeon, S. I., Yang, S., Park, J. Y., Jo, M., Kim, J., Choi, J., Yun, W. S., Kim, J., Lee, Y., Shim, M. K., Kim, Y., & Kim, K. (2022). Comparative study of cathepsin B-cleavable linkers for the optimal design of cathepsin B-specific doxorubicin prodrug nanoparticles for targeted cancer therapy. Biomaterials, 289, 121806. <a
+
Ruan, H., Hao, S., Young, P., & Zhang, H. (2015). Targeting Cathepsin B for Cancer Therapies. Horiz Cancer Res, 56, 23-40.
        href="https://doi.org/10.1016/j.biomaterials.2022.121806" target="_blank">https://doi.org/10.1016/j.biomaterials.2022.121806</a>
+
</p>
+
<p>
+
Wang, J., Liu, M., Zhang, X., Wang, X., Xiong, M., & Luo, D. (2024). Stimuli-responsive linkers and their application in molecular imaging. Exploration, 4(4), 20230027. <a
+
        href="https://doi.org/10.1002/EXP.20230027" target="_blank">https://doi.org/10.1002/EXP.20230027</a>
+
 
</p>
 
</p>
 
<p>
 
<p>
Zhong, Y.-J., Shao, L.-H., & Li, Y. (2013). Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy (Review). Int J Oncol, 42(2), 373-383. <a
+
Szulc-Dąbrowska, L., Bossowska-Nowicka, M., Struzik, J., & Toka, F. N. (2020). Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol, 10, 601072. <a
         href="https://doi.org/10.3892/ijo.2012.1754" target="_blank">https://doi.org/10.3892/ijo.2012.1754</a>
+
         href="https://doi.org/10.3389/fcimb.2020.601072" target="_blank">https://doi.org/10.3389/fcimb.2020.601072</a>
 
</p>
 
</p>
 +
 
   </section>
 
   </section>
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 21:21, 30 September 2024


BBa_K5237101

Truncated and Mutated Form of Cathepsin B

Cathepsin B is a lysosomal protease involved in the progression of various cancer types. Here, we present a truncated and mutated form of cathepsin B (Δ1-20, D22A, H110A, R116A). This form of cathepsin B lacks an N-terminal signal peptide responsible for co-translational targeting of cathepsin B to the lumen of the endoplasmic reticulum. Additionally, we introduced three point mutations into the amino acid sequence of cathepsin B to increase its catalytic activity at higher pH values. We investigated cathepsin B induced cleavage of different peptide linkers via a fluorescence readout assay indicating that the truncated and mutated form of cathepsin B was not active in the cytosol. Western blotting further confirmed that our truncated and mutated form of cathepsin B was only poorly expressed in HEK293T cells.

 

1. Sequence Overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 566
    Illegal BglII site found at 665
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 67
    Illegal NgoMIV site found at 919
    Illegal AgeI site found at 751
  • 1000
    COMPATIBLE WITH RFC[1000]

2. Usage and Biology

Cathepsin B is a cysteine protease typically located in lysosomes or secreted outside the cell, where it degrades proteins of the extracellular matrix (Ruan et al., 2015). To facilitate lysosomal escape of cathepsin B, cells were treated with low concentrations of doxorubicin. As an alternative strategy, we created a cytosolic single-chain version of cathepsin B. Full-length human cathepsin B has an N-terminal signal peptide facilitating targeting and translation of cathepsin B into the rough endoplasmic reticulum (Ni et al., 2022). Procathepsin B is then transported into the lysosome where it matures into its active form by cleavage into a light and heavy chain (Szulc-Dąbrowska et al., 2020).

3. Assembly and Part Evolution

We designed a fluorescence readout assay in HEK293T cells based on expression of mCherry induced by the transactivator VP64. VP64 was conjugated to the DNA-binding domain (DBD) of Gal4 through the GFLG linker (BBa_K5237020). Binding of Gal4-DBD upstream of a gene encoding the fluorescence protein mCherry induces overexpression of mCherry by VP64. Consequently, separation of Gal4-DBD and VP64 by cathepsin B cleavage of the GFLG linker reduces mCherry expression (see Fig. 1).

Cathepsin B Fluorescence Readout Assay
Figure 1: Schematic Illustration of the Cathepsin B Fluorescence Readout Assay. The DNA-binding domain (DBD) of Gal4 is conjugated to the transactivator domain VP64 via a cathepsin B-cleavable peptide linker. Binding of the Gal4-DBD to the upstream activating sequence (UAS) in proximity to the mCherry gene induces mCherry overexpression via VP64. Cathepsin B cleavage of the linker separates Gal4-DBD and VP64 and consequently reduces mCherry expression.

We transfected our genetic constructs into HEK293T cells. The negative control was not transfected with the plasmid encoding cathepsin B. We investigated two different test conditions, in which we either transfected 30 ng or 60 ng of the plasmid encoding cathepsin B. The fluorescence intensity of mCherry was measured 48 hours after transfection. Our initial tests did not result in the unambiguous identification of a cathepsin B-cleavable peptide linker (see Fig. 2). For all linkers, we observed no significant decrease in fluorescence intensity between the negative control and test conditions. In some cases, the fluorescence intensity even increased in the test conditions compared to the negative control.

Fluorescence Readout
Figure 2: Fluorescence Readout After 48 hours for Five Different Peptide Linkers and Three Different Conditions. The fluorescence intensity for mCherry was measured for five different linkers. The negative control was not transfected with the plasmid encoding cathepsin B. The fluorescence intensity of the negative control was set to one. Two different test conditions were investigated, in which either 30 ng or 60 ng of the plasmid encoding cathepsin B were transfected.

Since cathepsin B is a lysosomal protease that is normally only active in the lysosome and the extracellular environment but not in the cytosol, we decided to change the native amino acid sequence of cathepsin B. The first modification we made to the gene encoding human cathepsin B was the deletion of the first twenty amino acids. This N-terminally truncated version of cathepsin B had previously been observed to have catalytic activity even in the absence of lysosomal proteases like pepsin (Müntener et al., 2005). Furthermore, we introduced three point mutations into the polypeptide chain of cathepsin B (D22A, H110A, and R116A). This has been shown to increase the activity of cathepsin B at higher pH values by disrupting the interactions of an occluding loop with the substrate binding pocket of cathepsin B (Nägler et al., 1997).

4. Results

4.1 The Truncated and Mutated Form of Cathepsin B Is not Catalytically Active in Vivo

We performed the same fluorescence readout assay in HEK293T cells that we also used for wild-type cathepsin B (BBa_K5237100). The fluorescence intensity of mCherry was measured 48 hours after transfection. However, we observed no decrease in fluorescence between our negative control and test conditions, indicating that Gal4-DBD-Linker-VP64 was not cleaved (see Fig. 3).

Fluorescence Readout
Figure 3: Fluorescence Readout for the Truncated and Mutated Version of Cathepsin B. The fluorescence intensity for mCherry was measured for five different linkers. The negative control was not transfected with the plasmid encoding cathepsin B. The fluorescence intensity of the negative control was set to one. Two different test conditions were investigated, in which either 30 ng or 60 ng of the plasmid encoding cathepsin B were transfected.

4.2 The Truncated and Mutated Form of Cathepsin B Was Poorly Expressed in HEK293T Cells

Figure 4 shows a western blot of the wild-type (wt) version of cathepsin B as well as the truncated and mutated version of cathepsin B (Δ1-20, D22A, H110A, R116A). Cells of both cathepsin B versions were treated with 500 nM doxorubicin (dox) 24 hours post-transfection and incubated for additional 24 hours. For each condition, three replicates were blotted. We observed no differences in protein expression levels between the dox-treated and untreated wt versions of cathepsin B. For the truncated and mutated version of cathepsin B, however, only the untreated samples showed the corresponding band at approximately 36 kDa expected for this version of cathepsin B. Additionally, the bands of the truncated and mutated version appeared much weaker than the ones of the wt, indicating poorer protein expression.

Fluorescence Readout
Figure 4: Western Blot of Two Versions of Cathepsin B With and Without Doxorubicin. From left to right: protein ladder, wild-type (wt) cathepsin B with (+) and without (-) doxorubicin, truncated and mutated version of cathepsin B with (+) and without (-) doxorubicin. The household protein β-tubulin is visible in all samples at 55 kDa. The wt cathepsin B also shows bands for pro-cathepsin B at 42 kDa, mature single-chain cathepsin B at 33 kDa and mature double-chain cathepsin B at 26 kDa. The band for the truncated and mutated version of cathepsin B can be seen in the samples without doxorubicin at 36 kDa.

4.3 Conclusion

Our results indicate that the truncated and mutated form of cathepsin B was poorly expressed in HEK293T cells. Therefore, we continued to use the wild-type form of cathepsin B for further experiments. After consulting the literature, we decided to treat cells with the cytostaticum doxorubicin to induce lysosomal escape of cathepsin B, as had been previously reported (Bien et al., 2004).

5. References

Müntener, K., Willimann, A., Zwicky, R., Svoboda, B., Mach, L., & Baici, A. (2005). Folding Competence of N-terminally Truncated Forms of Human Procathepsin B*. Journal of Biological Chemistry, 280(12), 11973-11980. https://doi.org/10.1074/jbc.M413052200

Nägler, D. K., Storer, A. C., Portaro, F. C. V., Carmona, E., Juliano, L., & Ménard, R. (1997). Major Increase in Endopeptidase Activity of Human Cathepsin B upon Removal of Occluding Loop Contacts. Biochemistry, 36(41), 12608-12615. https://doi.org/10.1021/bi971264+

Ni, J., Lan, F., Xu, Y., Nakanishi, H., & Li, X. (2022). Extralysosomal cathepsin B in central nervous system: Mechanisms and therapeutic implications. Brain Pathol, 32(5), e13071. https://doi.org/10.1111/bpa.13071

Ruan, H., Hao, S., Young, P., & Zhang, H. (2015). Targeting Cathepsin B for Cancer Therapies. Horiz Cancer Res, 56, 23-40.

Szulc-Dąbrowska, L., Bossowska-Nowicka, M., Struzik, J., & Toka, F. N. (2020). Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol, 10, 601072. https://doi.org/10.3389/fcimb.2020.601072