Difference between revisions of "Part:BBa K5246065"

 
Line 4: Line 4:
  
 
===Introduction===
 
===Introduction===
 +
Vilnius-Lithuania iGEM 2024 project <HTML><b><a href="https://2024.igem.wiki/vilnius-lithuania" target="_blank">Synhesion</a></b></html> aspires to create biodegradable and environmentally friendly adhesives. We were inspired by bacteria, which naturally produce adhesives made from polysaccharides. Two bacteria from aquatic environments - <I> C. crescentus </I> and <I> H. baltica </I> - harness 12 protein synthesis pathways to produce sugars, anchoring them to the surfaces. We aimed to transfer the polysaccharide synthesis pathway to industrially used <I>E. coli</I> bacteria to produce adhesives. Our team concomitantly focused on creating a novel <I>E. coli</I> strain for more efficient production of adhesives.
  
 +
See Vilnius-Lithuania iGEM 2024 project <HTML><b><a href="https://2024.igem.wiki/vilnius-lithuania" target="_blank">Synhesion</a></b></html> for more information.
  
 
===Usage and Biology===
 
===Usage and Biology===
TBA
+
Cas9 gRNA scaffold for gene knock-out.
  
 
===Sequence and Features===
 
===Sequence and Features===
Line 13: Line 15:
  
  
===Functional Parameters===
+
===References===
<partinfo>BBa_K5246065 parameters</partinfo>
+
 
+
===Experimental characterization===
+

Latest revision as of 21:49, 1 October 2024


Cas9 gRNA scaffold

Introduction

Vilnius-Lithuania iGEM 2024 project Synhesion aspires to create biodegradable and environmentally friendly adhesives. We were inspired by bacteria, which naturally produce adhesives made from polysaccharides. Two bacteria from aquatic environments - C. crescentus and H. baltica - harness 12 protein synthesis pathways to produce sugars, anchoring them to the surfaces. We aimed to transfer the polysaccharide synthesis pathway to industrially used E. coli bacteria to produce adhesives. Our team concomitantly focused on creating a novel E. coli strain for more efficient production of adhesives.

See Vilnius-Lithuania iGEM 2024 project Synhesion for more information.

Usage and Biology

Cas9 gRNA scaffold for gene knock-out.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References