Difference between revisions of "Part:BBa K5205008"
Line 5: | Line 5: | ||
ureE encodes for a nickel-binding protein involved in the assembly of the urease metallocentre in S. pasteurii DSM33 (Ciurli et al., 2002; Remaut et al., 2001). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP). | ureE encodes for a nickel-binding protein involved in the assembly of the urease metallocentre in S. pasteurii DSM33 (Ciurli et al., 2002; Remaut et al., 2001). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP). | ||
− | < | + | <html> |
− | === | + | <body> |
+ | <figure> | ||
+ | <div class = "center"> | ||
+ | <center><img src = "https://static.igem.wiki/teams/5205/parts/05-1.png" style = "width:600px"></center> | ||
+ | </div> | ||
+ | <figcaption><center>Figure 1. A. Schematic of urease and microbially induced calcite precipitation (MICP) in S. pasteurii (Wu et al., 2021); B. UreE in the urease gene cluster of S. pasteurii DSM33 (Pei et al., 2023). </center></figcaption> | ||
+ | </figure> | ||
+ | </body> | ||
+ | </html> | ||
<!-- --> | <!-- --> | ||
− | <span class='h3bb'> | + | <span class='h3bb'></span> |
+ | ===Sequence and Features=== | ||
<partinfo>BBa_K5205008 SequenceAndFeatures</partinfo> | <partinfo>BBa_K5205008 SequenceAndFeatures</partinfo> | ||
Line 17: | Line 26: | ||
<partinfo>BBa_K5205008 parameters</partinfo> | <partinfo>BBa_K5205008 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | |||
+ | |||
+ | <!-- Add more about the biology of this part here--> | ||
+ | ===Usage and Biology=== | ||
+ | Microbiologically Induced Calcite Precipitation (MICP) involves hydrolyzing urea into ammonia and carbonate ions, raising pH to form calcium carbonate precipitates (Sarayu et al., 2014). This process can also precipitate heavy metals like cadmium and remove them from the water (Qasem et al., 2021). By introducing urease-related genes (ureE) from S. pasteurii into E. coli, E. coli can be engineered to be a heavy metal remover. | ||
+ | |||
+ | ===References=== | ||
+ | Ciurli, S., Safarov, N., Miletti, S., Dikiy, A., Christensen, S. K., Kornetzky, K., Bryant, D. A., Vandenberghe, I., Devreese, B., Samyn, B., Remaut, H., & van Beeumen, J. (2002). Molecular characterization of Bacillus pasteurii UreE, a metal-binding chaperone for the assembly of the urease active site. J Biol Inorg Chem, 7(6), 623-631. https://doi.org/10.1007/s00775-002-0341-7 | ||
+ | |||
+ | Pei, D., Liu, Z., & Hu, B. (2023). A novel urease gene structure of Sporosarcina pasteurii with double operons. | ||
+ | |||
+ | Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0 | ||
+ | |||
+ | Remaut, H., Safarov, N., Ciurli, S., & Van Beeumen, J. (2001). Structural basis for Ni(2+) transport and assembly of the urease active site by the metallochaperone UreE from Bacillus pasteurii. J Biol Chem, 276(52), 49365-49370. https://doi.org/10.1074/jbc.M108304200 | ||
+ | |||
+ | Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review. Appl Biochem Biotechnol, 172(5), 2308-2323. https://doi.org/10.1007/s12010-013-0686-0 | ||
+ | |||
+ | Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112396 |
Latest revision as of 03:28, 24 September 2024
ureE, nickel-binding protein from Sporosarcina pasteurii DSM33
ureE encodes for a nickel-binding protein involved in the assembly of the urease metallocentre in S. pasteurii DSM33 (Ciurli et al., 2002; Remaut et al., 2001). The urease is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
Microbiologically Induced Calcite Precipitation (MICP) involves hydrolyzing urea into ammonia and carbonate ions, raising pH to form calcium carbonate precipitates (Sarayu et al., 2014). This process can also precipitate heavy metals like cadmium and remove them from the water (Qasem et al., 2021). By introducing urease-related genes (ureE) from S. pasteurii into E. coli, E. coli can be engineered to be a heavy metal remover.
References
Ciurli, S., Safarov, N., Miletti, S., Dikiy, A., Christensen, S. K., Kornetzky, K., Bryant, D. A., Vandenberghe, I., Devreese, B., Samyn, B., Remaut, H., & van Beeumen, J. (2002). Molecular characterization of Bacillus pasteurii UreE, a metal-binding chaperone for the assembly of the urease active site. J Biol Inorg Chem, 7(6), 623-631. https://doi.org/10.1007/s00775-002-0341-7
Pei, D., Liu, Z., & Hu, B. (2023). A novel urease gene structure of Sporosarcina pasteurii with double operons.
Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
Remaut, H., Safarov, N., Ciurli, S., & Van Beeumen, J. (2001). Structural basis for Ni(2+) transport and assembly of the urease active site by the metallochaperone UreE from Bacillus pasteurii. J Biol Chem, 276(52), 49365-49370. https://doi.org/10.1074/jbc.M108304200
Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review. Appl Biochem Biotechnol, 172(5), 2308-2323. https://doi.org/10.1007/s12010-013-0686-0
Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112396