Difference between revisions of "Part:BBa K5143002"
Perrine-fdn (Talk | contribs) |
|||
(One intermediate revision by the same user not shown) | |||
Line 31: | Line 31: | ||
<figure> | <figure> | ||
<img src="https://static.igem.wiki/teams/5143/bba-k5143002-cp19k.png" width="400" alt="NOM PHOTO"> | <img src="https://static.igem.wiki/teams/5143/bba-k5143002-cp19k.png" width="400" alt="NOM PHOTO"> | ||
− | <figcaption>Figure 1: Cp19k Gene</figcaption> | + | <figcaption><i><u>Figure 1:</u> Cp19k Gene</i></figcaption> |
</figure> | </figure> | ||
<figure> | <figure> | ||
<img src="https://static.igem.wiki/teams/5143/bba-k5143002-barnacle.jpg" width="200" alt="Barnacle"> | <img src="https://static.igem.wiki/teams/5143/bba-k5143002-barnacle.jpg" width="200" alt="Barnacle"> | ||
− | <figcaption>Figure 2: Barnacle on a rock surface</figcaption> | + | <figcaption><i><u>Figure 2:</u> Barnacle on a rock surface</i></figcaption> |
</figure> | </figure> | ||
</div> | </div> | ||
+ | <br> | ||
<h1>Construction</h1> | <h1>Construction</h1> | ||
<p> | <p> | ||
The Cp19k gene was synthesised and its nucleotide sequence optimised for synthesis and expression in <i>Saccharomyces cerevisiae</i>. This protein is used in fusion with spider silk protein as a bioglue, to improve its adhesive properties: <a href="https://parts.igem.org/Part:BBa_K5143003" target="_blank">BBa_K5143003</a> | The Cp19k gene was synthesised and its nucleotide sequence optimised for synthesis and expression in <i>Saccharomyces cerevisiae</i>. This protein is used in fusion with spider silk protein as a bioglue, to improve its adhesive properties: <a href="https://parts.igem.org/Part:BBa_K5143003" target="_blank">BBa_K5143003</a> | ||
</p> | </p> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</body> | </body> | ||
</html> | </html> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Line 60: | Line 52: | ||
<!-- --> | <!-- --> | ||
− | < | + | <h1>Sequence and Features</h1> |
<partinfo>BBa_K5143002 SequenceAndFeatures</partinfo> | <partinfo>BBa_K5143002 SequenceAndFeatures</partinfo> | ||
− | + | <br> | |
+ | <h1>References</h1> | ||
+ | <p> | ||
+ | Malay, A. D., Craig, H. C., Chen, J., Oktaviani, N. A. & Numata, K. Complexity of Spider Dragline Silk. Biomacromolecules 23, 1827–1840 (2022). <br> | ||
+ | <br> | ||
+ | Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk | PNAS. https://www-pnas-org.docelec.univ-lyon1.fr/doi/full/10.1073/pnas.2107065118. <br> | ||
+ | <br> | ||
+ | A bioinspired synthetic fused protein adhesive from barnacle cement and spider dragline for potential biomedical materials - PubMed. https://pubmed.ncbi.nlm.nih.gov/37776922/. | ||
+ | </p> | ||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Latest revision as of 14:12, 1 October 2024
Cp19k : a barnacle cement protein used as a bioglue, optimised for Saccharomyces cerevisiae
Description
Barnacle, a marine organism, easily stick to underwater matrices through the secretion of various proteins and forming cement complexes. The protein complex for barnacle, Cp19k plays a key role in interfacial adhesion. Adhesion strength: 2.2 mJ/m². See BBa_K3089008 which provided the inspiration for the discovery of this sticky protein.
Construction
The Cp19k gene was synthesised and its nucleotide sequence optimised for synthesis and expression in Saccharomyces cerevisiae. This protein is used in fusion with spider silk protein as a bioglue, to improve its adhesive properties: BBa_K5143003
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
Malay, A. D., Craig, H. C., Chen, J., Oktaviani, N. A. & Numata, K. Complexity of Spider Dragline Silk. Biomacromolecules 23, 1827–1840 (2022).
Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk | PNAS. https://www-pnas-org.docelec.univ-lyon1.fr/doi/full/10.1073/pnas.2107065118.
A bioinspired synthetic fused protein adhesive from barnacle cement and spider dragline for potential biomedical materials - PubMed. https://pubmed.ncbi.nlm.nih.gov/37776922/.