Difference between revisions of "Part:BBa K4579021"
Alexakmorton (Talk | contribs) |
Brianmatibag (Talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 35: | Line 35: | ||
<h1>Usage and Biology</h1> | <h1>Usage and Biology</h1> | ||
− | + | This is a Type 3q part containing a putative, novel microcin identified using the program <i>cinful</i> (Cole et al., 2022) which uses bioinformatics and alignment analysis to identify potential microcins from the inputted genomes of bacteria. Although we did not use this microcin in an assembly, it should be compatible with a CP25 promoter (<html><a href="https://parts.igem.org/Part:BBa_K4579037">BBa_K4579037</a></html>) and <i>rpoC</i> terminator (<html><a href="https://parts.igem.org/Part:BBa_K4579036">BBa_K4579036</a></html>) to form a constitutive microcin expression. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | < | + | |
− | < | + | |
− | < | + | |
− | < | + | |
− | </ | + | |
<h1>Design Notes</h1> | <h1>Design Notes</h1> | ||
− | + | We used <i>cinful</i> to predict and select potential microcins from genomes of bacteria related to our potential targets. To adapt our putative novel microcins to our cloning scheme, we first removed the native signal peptide sequence from the beginning of each microcin so that it could become fused with our system’s signal peptide (<html><a href="https://parts.igem.org/Part:BBa_K4579008">BBa_K4579008</a></html>) when expressed. Once the signal peptide sequence was removed, we obtained the original nucleotide sequence for each microcin by using the sequence start and stop positions provided in the <i>cinful</i> output to locate the sequence of the microcin within the genome. We then added flanking sequences to either side of each microcin that would add the necessary BsmBI and BsaI restriction sites for our cloning scheme (detailed in Figure 3 of our <html><a href="https://2023.igem.wiki/austin-utexas/parts">Parts</a></html> page). The final sequences of microcins - signal peptide + flanking restriction sites were then synthesized commercially as Gene Fragments by Twist Biosciences for use in our digestion-ligation reactions. | |
<h1>Characterization</h1> | <h1>Characterization</h1> | ||
− | + | All parts uploaded to the registry by our team, including this one, have been sequence confirmed. | |
<h1>Source</h1> | <h1>Source</h1> | ||
+ | This microcin was identified from the genome of <i>Xanthomonas campestris pv. musacearum</i> NCPPB 2251 using <i>cinful</i>. | ||
<h1>References</h1> | <h1>References</h1> | ||
Line 72: | Line 64: | ||
<h1>Sequence and Features</h1> | <h1>Sequence and Features</h1> | ||
<partinfo>BBa_K4579021 SequenceAndFeatures</partinfo> | <partinfo>BBa_K4579021 SequenceAndFeatures</partinfo> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 11:30, 12 October 2023
MccX01 - Xanthomonas microcin 1
Introduction
The 2023 UT Austin iGEM Team’s modular microcin expression parts collection includes parts necessary for engineering a bacterial chassis to secrete microcins, a type of small antimicrobial peptide. Our team has specifically designed parts to engineer a modular two-plasmid system that facilitates extracellular secretion of microcins by the chassis. One plasmid contains the microcin with a signal peptide sequence that indicates to the cell that the microcin is to be secreted. The other plasmid (pSK01) is from the literature (Kim et al., 2023) and contains genes for the proteins CvaA and CvaB, which are necessary to secrete small peptides using the E. coli microcin V (MccV) type I secretion system (T1SS) shown in Figure 2 of our Project Description.
Our parts collection includes a a selection of promoter (Type 2), coding sequence (Type 3), and terminator/regulatory gene (Type 4) parts that can be easily assembled to express microcins either constitutively or under inducible control. This allows for the modular engineering of microcin expression plasmids containing various microcins that can undergo extracellular secretion when used in conjunction with the secretion system plasmid pSK01.
Our basic and composite parts follow the Bee Toolkit/Yeast Toolkit standard of Golden Gate assembly (Lee et al., 2015; Leonard et al., 2018). Our assembly method involves the use of BsmBI digestion-ligation to create basic parts which can then be further digested with BsaI and ligated to form composite parts. The BTK/YTK standard includes part type-specific prefix and suffix overhangs generated by BsaI for each part, and these overhangs are NOT included in their sequences in the registry. For reference, our standard’s part type-specific overhangs are listed in Figure 2 on our Parts page.
Categorization
Basic parts
- Promoters (Type 2) – Seven inducible promoters selected due to their relatively high dynamic range (Meyer et al., 2019) and apparent functionality in a variety of Proteobacteria (Schuster & Reisch, 2021), and one constitutive CP25 promoter (Leonard et al., 2018).
- Coding Sequences (Type 3) – Signal peptide + microcin fusion coding sequences, a green fluorescent protein gene, and secretion system genes cvaA and cvaB which are together referred to as CvaAB.
- Terminators/Regulatory Genes (Type 4) – An rpoC terminator plus a collection of seven regulatory genes, each associated with one of our seven inducible promoters.
Composite parts
- Constitutive Microcin Expression Assemblies - Assemblies of microcins (some with immunity proteins) with a constitutive CP25 promoter and rpoC terminator. These function alongside pSK01 in a two-plasmid secretion system, and we use these two-plasmid systems to assess if our novel microcins are effective inhibitors of pathogenic targets.
- Inducible GFP Expression Assemblies – Assemblies of GFP under the control of various inducible promoter systems. These were used to assess the dynamic range of our inducible promoter systems.
- Inducible Microcin Expression Assemblies – Assemblies of select microcins under the control of an inducible promoter system.
Usage and Biology
This is a Type 3q part containing a putative, novel microcin identified using the program cinful (Cole et al., 2022) which uses bioinformatics and alignment analysis to identify potential microcins from the inputted genomes of bacteria. Although we did not use this microcin in an assembly, it should be compatible with a CP25 promoter (BBa_K4579037) and rpoC terminator (BBa_K4579036) to form a constitutive microcin expression.
Design Notes
We used cinful to predict and select potential microcins from genomes of bacteria related to our potential targets. To adapt our putative novel microcins to our cloning scheme, we first removed the native signal peptide sequence from the beginning of each microcin so that it could become fused with our system’s signal peptide (BBa_K4579008) when expressed. Once the signal peptide sequence was removed, we obtained the original nucleotide sequence for each microcin by using the sequence start and stop positions provided in the cinful output to locate the sequence of the microcin within the genome. We then added flanking sequences to either side of each microcin that would add the necessary BsmBI and BsaI restriction sites for our cloning scheme (detailed in Figure 3 of our Parts page). The final sequences of microcins - signal peptide + flanking restriction sites were then synthesized commercially as Gene Fragments by Twist Biosciences for use in our digestion-ligation reactions.
Characterization
All parts uploaded to the registry by our team, including this one, have been sequence confirmed.
Source
This microcin was identified from the genome of Xanthomonas campestris pv. musacearum NCPPB 2251 using cinful.
References
- Cole, T. J., Parker, J. K., Feller, A. L., Wilke, C. O., & Davies, B. W. (2022). Evidence for widespread class II microcins in Enterobacterales Genomes. Applied and Environmental Microbiology, 88(23), e01486-22.
- Kim, S. Y., Parker, J. K., Gonzalez-Magaldi, M., Telford, M. S., Leahy, D. J., & Davies, B. W. (2023). Export of Diverse and Bioactive Small Proteins through a Type I Secretion System. Applied and Environmental Microbiology, 89(5), e00335-23.
- Lee, M. E., DeLoache, W. C., Cervantes, B., & Dueber, J. E. (2015). A highly characterized yeast toolkit for modular, multipart assembly. ACS Synthetic Biology, 4(9), 975-986.
- Leonard, S. P., Perutka, J., Powell, J. E., Geng, P., Richhart, D. D., Byrom, M., Kar, S., Davies, B. W., Ellington, D. E., Moran, N. A., & Barrick, J. E. (2018). Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synthetic Biology, 7(5), 1279-1290.
- Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J., & Voigt, C. A. (2019). Escherichia coli “Marionette” strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 15(2), 196-204.
- Schuster, L. A., & Reisch, C. R. (2021). A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Research, 49(12), 7189-7202.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]